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Abstract

In recent years, an increasing number of outbreaks of Dengue, Chikungunya and Zika

viruses have been reported in Asia and the Americas. Monitoring virus genotype diversity is

crucial to understand the emergence and spread of outbreaks, both aspects that are vital to

develop effective prevention and treatment strategies. Hence, we developed an efficient

method to classify virus sequences with respect to their species and sub-species (i.e. sero-

type and/or genotype). This ArboTyping tool provides an easy-to-use software implementa-

tion of this new method and was validated on a large dataset assessing the classification

performance with respect to whole-genome sequences and partial-genome sequences.

Available online: http://krisp.ukzn.ac.za/app/.

Author summary

Dengue (DENV), Chikungunya (CHIKV) and Zika (ZIKV) are considered major public

health challenges. In addition to the epidemic caused by DENV, which has been described in

many tropical countries, the introduction of CHIKV and ZIKV in these countries is a major

public health concern. These arboviruses are primarily transmitted by mosquitoes of the spe-

cies Ae. Aegypti and its related diseases result in increased financial costs associated with
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diagnosis and treatment. To support the design of efficient diagnosis, prevention and treat-

ment strategies, a bioinformatics tool has been developed for the genotyping of these viruses

based on appropriate evolutionary models in an automatic, accurate and rapid manner. A set

of virus reference sequences was obtained from GenBank and used for the development of

the tools. This process involved the alignment of the reference sequences followed by phylo-

genetic tree reconstructions. To assign the genotypes uploaded by the user, the tool analyses

the sequences one by one, genotypes through identification, alignment and phylogenetic

reconstruction. This computational method allows the high-throughput classification of

these virus species and genotypes in seconds. As shown experimentally, genotypes are classi-

fied most confidently using the envelope gene or complete genome sequences.

Introduction

In the recent years, an increasing number of outbreaks of Dengue (DENV), Chikungunya

(CHIKV) and Zika (ZIKV) viruses have been reported in Asia and the Americas [1–3]. The

predominant mosquito species transmitting DENV, CHIKV and ZIKV, are Aedes aegypti and

Aedes Albopictus, which are widely distributed in tropical and sub-tropical regions [4]. In the

past few years, several studies have reported concurrent outbreaks of DENV, CHIKV and

ZIKV in the same geographical area [5, 6]. Currently, unprecedented outbreaks of DENV,

CHIKV and ZIKV are co-occurring in Brazil. In 2017, the Brazilian Ministry of Health esti-

mated that approximately 251,000 suspected cases of DENV, 185,000 suspected cases of

CHIKV and close to 18,000 suspected ZIKV cases had occurred in Brazil [7].

Monitoring virus genotype diversity is crucial to understand the emergence and spread of

outbreaks, both aspects that are vital to develop effective prevention and treatment strategies.

Both DENV and CHIKV epidemics are associated with a mortality and morbidity that puts a

significant economic burden on the affected regions [8,9]. While infections with ZIKV are

rarely fatal, as stated before, ZIKV infections may result in Guillain-Barré syndrome and con-

genital malformations [10,11]. Genomic surveillance of epidemics at the appropriate resolu-

tion and consistently classifying the reported genetic sequences, also enables the identification

of strains associated with greater epidemic potential [12] or disease severity [13].

However, methods that consistently classify arbovirus sequences at the level of species and

sub-species (i.e. serotype and/or genotype) are currently lacking. Additionally, whole genome

sequences are often not available in routine clinical settings, forcing the use of shorter gene

sequences to classify at viral species or sub-species level. It has however insufficiently been

explored which genomic regions are most suitable for accurate classification.

A new computational method for the identification of DENV/CHIKV/ZIKV sequences,

with respect to species and sub-species (i.e. serotype and/or genotype), is presented. The classi-

fication method is implemented in the ArboTyping software tool, which was validated on a

large dataset by assessing the classification performance of whole-genome sequences, partial-

genome sequences and products from next-generation sequencing methods. Furthermore, the

suitability of different genomic regions for virus classification was evaluated.

Materials and methods

Datasets

Global whole-genome sequence dataset (Global-WG). A dataset of previously published

whole-genome sequences from GenBank [14] was compiled. This dataset consists out of 4,118

DENV sequences, 653 CHIKV sequences and 413 ZIKV sequences and contains DENV
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sequences for each of the four known serotypes: DENV-sero1 (n = 1688), DENV-sero2 (n =

1317), DENV-sero3 (n = 897) and DENV-sero4 (n = 216). The list of GenBank accession num-

bers for this global whole-genome dataset is available in the Supporting Information section

(S1 File). In the remainder of this manuscript, this dataset will be referred to as Global-WG.

Global envelope sequence dataset (Global-ENV). A dataset of previously published

envelope sequences from GenBank [14] was compiled. This dataset consists out of 4,118

DENV sequences, 2,531 CHIKV sequences and 413 ZIKV sequences and contains DENV

sequences for each of the four known serotypes: DENV-sero1 (n = 1688), DENV-sero2

(n = 1317), DENV-sero3 (n = 897) and DENV-sero4 (n = 216). The list of GenBank accession

numbers for this global envelope dataset is available in the Supporting Information section (S2

File). In the remainder of this manuscript, this dataset will be referred to as Global-ENV.

Identification of genotypes and selection of reference sequences. To identify the viral

genotypes, a multiple sequence alignment was constructed with the MAFFT alignment soft-

ware [15] per virus species, using the Global-WG dataset. Each alignment was edited manually

until a codon-correct alignment was achieved in all genes. The next step in this exploration

involved a phylogenetic analysis using PhyML (i.e. Maximum likelihood, 1000 bootstrap repli-

cates) and MrBayes (i.e. Bayesian) [16,17]. With this approach, four main DENV clades (i.e.

serotype 1 to 4) and 19 genotypes (i.e. 1I, 1II, 1III, 1IV, 1V, 2I, 2II, 2III, 2IV, 2V, 2VI, 3I, 3II,

3III, 3V, 4I, 4II, 4III and 4IV) were identified. These findings are in agreement with the current

consensus in DENV classification [18–21]. For CHIKV, three phylogenetic clades can be dis-

tinguished: The East-Central-South African (ECSA) genotype, the Asian-Caribbean genotype

and the West African genotype. The West African genotype being more divergent and less

widespread than the ECSA genotype and the Asian-Caribbean genotype [22,23]. ZIKV, as

well, can be classified into two genotypes. The African genotype, originally identified in

Uganda in 1947 [24], is found in many African countries [25]. The Asian genotype was identi-

fied in Malaysia in 1966 [26], this genotype has recently caused the worldwide epidemic in

Asia and the Pacific [27,28], and is responsible for the epidemic in the Americas [5].

The accuracy and consistency with which a method identifies viral species and genotype

clades depends on the selection of a set of representative reference sequences [29–31].

The initial step in the selection of reference strains for our method involved the identifica-

tion of highly divergent but equidistant whole-genome sequences that are representative for

the diversity within the different DENV, CHIKV and ZIKV genotypes, by screening all pub-

lished complete genome sequences in our Global-WG dataset. For example, we normally start

by selecting 5–10 sequences that represent the diversity of each virus genotypes. Sequences

that met these selection criteria were quality controlled for the presence of insertions, dele-

tions, frame shifts and non-IUPAC characters using VIRULIGN [32]. For DENV, we used the

reference sequences that are included with the VIRULIGN software, for ZIKV, we used the ref-

erence sequence presented in [33], and for CHIKV we constructed a new reference sequence

from NC_004162 that we added to the VIRULIGN repository. Sequences that pass the quality

control were aligned using MAFFT [15], and were subjected to phylogenetic analysis using

PAUP� (i.e. Neighbor Joining), MrBayes (i.e. Bayesian) and PhyML (i.e. Maximum likelihood)

[16,17,34,35] using GTR+G+I. Sequences that gave consistent topologies using all three tree

inference methods were retained as potential reference sequences (see Supporting Informa-

tion, S1 Table) and used in the next step of the evaluation process.

We established that none of the selected reference strains were recombinants (S2 Fig) using

the recombination detection program RDP4 [36]

Suitability of sub-genomic regions for genotyping purposes. The reference strain data-

set (S1 Table) was then explored to establish the suitability of sub-genomic regions for auto-

mated genotyping. Two different methods were used.
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The first was a boot-scanning method, using a sliding window approach exploring the

range between 200 and 2,000 nucleotides. All windows across the genome were used for the

construction of Neighbor joining trees with 1,000 bootstrap replicates. The aim was to find the

size and segments of the genome that would correctly classify a query sequence with a boot-

strap support of>70%.

The second method involved the calculation of the phylogenetic signal present in each of

the DENV, CHIKV and ZIKV genes, using the same set of reference sequences. To compute

the phylogenetic signal, the TreePuzzle software [37] implementation of the likelihood-map-

ping method [38] was used. Only between-genotype quartets were evaluated. Quartet puzzling

essentially is a three-step procedure, first reconstructing all possible quartet maximum likeli-

hood trees (maximum-likelihood step), then repeatedly combining the quartet trees to an

overall tree (puzzling step), and finally computing the majority rule consensus of all intermedi-

ate trees giving the quartet puzzling tree (consensus step).

Classification method and implementation

Classification method. Our method involves a viral classification pipeline, drawing inspi-

ration from the one described previously to classify HIV, hepatitis C virus and human T-lym-

photropic virus sequences [29,30]. The classification pipeline presented here consists of two

classification components. The first classification component enables species and sub-species

assignments. The classification analysis subjects a query sequence to a BLAST analysis against

a set of reference sequences [39]. A query is assigned to a particular type when BLAST reports

an assignment with a score that exceeds a predefined threshold.

The second classification component involves the construction of a Neighbor Joining phy-

logenetic tree. This component enables assignments on genotype and/or subtype level. First,

the query sequence is aligned with a set of reference sequences.

The alignment is produced using the profile alignment option in the ClustalW software

[40], such that the query sequence is added to the existing alignment of reference sequences.

Subsequent to the alignment, a Neighbor Joining phylogenetic tree, with 100 bootstrap repli-

cates, is constructed. The tree is constructed using the HKY distance metric with gamma

among-site rate variation, as implemented in the PAUP� software [34]. The query sequence is

assigned to a particular genotype if it clusters monophyletically with that genotype clade with

bootstrap support >70%. If the bootstrap support is <70%, the genotype is reported to be

unassigned.

Software implementation. While the classification method was inspired by the one previ-

ously presented [29], a new software framework was developed to be easily adaptable to the

classification procedures for various viral pathogens. All source code is written in the Java pro-

gramming language (Fig 1). The software framework is part of the Genome Detective tool-

chain [41]

ArboTyping classification method and implementation. Firstly, the viral species is

determined using BLAST, classifying the sequence as DENV, CHIKV or ZIKV.

In case the submitted sequence was assigned either as ZIKV or CHIKV, a Neighbor joining

tree is inferred to determine the respective ZIKV or CHIKV genotype. Only for DENV,

another BLAST procedure is invoked to assign the serotype first. Based on the inferred sero-

type, a serotype specific Neighbor joining tree is constructed to determine the Dengue

genotype.

For each of these steps, the earlier discussed reference strains were used, with respect to the

appropriate typing level (i.e. virus species, serotype or genotype). This process is summarized

in a decision tree in Fig 2.
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Testing revealed that a BLAST cut-off value of 200 allowed accurate identification of the

virus species and DENV serotypes using sequence segments >150 base pairs.

Note that the species and serotype classification procedure are implemented as separate

BLAST steps. This enables the tool to efficiently perform large throughput species classifica-

tion, such as for the classification of next-generation sequencing reads.

An instance of the ArboTyping web application is publically available on a dedicated server

(http://krisp.org.za/tools.php). The web interface on this server accepts up to 2,000 whole-

genome or partial genome sequences at a time.

Classification performance for whole-genomes and sub-genomic regions. To deter-

mine the accuracy of the automated method for whole-genome sequences, the method was

evaluated on a whole-genome sequence dataset (i.e. Global-WG dataset).

Fig 1. The typing tools’ web interface. The web interface provides users a portal to run classifications on their sequences and to visualize the classification

results (A). The typing report presents information about the sequence name of the query sequence, the nucleotide length of the sequence, an illustration of the

position of the sequence in the virus’ genome, the species assignment and the genotype assignment. A detailed report is provided for the phylogenetic analysis

that resulted into this classification. All results can be exported to a variety of file formats (XML, CSV, Excel or FASTA format). The detailed HTML report (B)

contains information on the sequence name, length, assigned virus and genotype, an illustration of the position of the sequence in the virus’ genome and the

phylogenetic analysis section. The phylogenetic analysis section shows the alignment and constructed phylogeny: the query sequence is always shown at the top

of the phylogenetic tree.

https://doi.org/10.1371/journal.pntd.0007231.g001
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As sequences from sub-genomic regions are more commonly available than whole-genome

sequences, the method’s accuracy was also evaluated in this context. For this purpose, the

envelope sequences in the Global-ENV dataset were used for evaluation.

Each of the sequences considered for evaluation was assigned using both the gold standard

and the here described automated method. The gold standard, a manual classification consists

of performing an assignment using both Bayesian (i.e. MrBayes, assignment with

posterior> 90% [17]) and Maximum likelihood (i.e. PhyML, 1000 bootstrap replicates, assign-

ment with > 70% of replicates [16]) phylogenetic analysis. When the assignments generated

by both the Bayesian and Maximum likelihood technique match, the classification is con-

firmed [31].

The sensitivity, specificity and accuracy of our method was calculated for both species

assignment and genotyping. Sensitivity was computed by the formula TP
TPþFN, specificity by the

formula TN
TNþFP and accuracy by the formula TPþTN

TPþFPþFNþTN [42]. In these formulas: TP = True Posi-

tives, FP = False Positives, TN = True Negatives and FN = False Negatives.

Fig 2. Outline of the classification procedure. Firstly (A), the viral species is determined using BLAST. When the submitted sequence is a Zika virus, a

Neighbor joining tree is constructed to determine the Zika genotype (B). When the submitted sequence is a Chikungunya virus, a Neighbor joining tree is

constructed to determine the Chikungunya genotype (C). When the submitted sequence is a Dengue virus, the serotype is determined using another BLAST

invocation (D). Based on the inferred serotype, a serotype specific Neighbor joining tree is constructed to determine the Dengue genotype (E, F, G, H).

https://doi.org/10.1371/journal.pntd.0007231.g002
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Results

ArboTyping classification method and implementation

An efficient method to classify virus sequences with respect to their species and sub-species

(i.e. serotype and/or genotype) was developed. This method was implemented in Java and this

implementation was integrated in an easy-to-use web interface. A detailed description of the

method and its implementation can be found in the ‘Classification method and implementa-

tion’ Methods subsection.

Suitability of sub-genomic regions for genotyping purposes

Two different methods were used to verify the suitability of sub-genomic regions for genotyp-

ing purposes: a boot-scanning method and a likelihood-mapping method (see Methods).

For DENV, the only sub genomic region that supports confident genotype assignment across

the four different serotypes was the envelope gene. For CHIKV, the envelope region E1 was the

only region that allowed consistent assignment. The boot-scanning analysis showed that for ZIKV,

segments of around 1,200–1,500 base pairs support the genotype assignment with bootstrap>

70% (Fig 3). This was the case over the entire genome, with the exception of the end of the genome

(i.e. the non-coding region) and near the NS3 region, where bootstraps fell below 60%.

Our likelihood-mapping analyses show that for DENV, the envelope, NS1, NS3 and NS5

had good phylogenetic signal across all four serotypes. For CHIKV, the envelope E2 gene had

the best signal but this region did not provide good boot-scanning support for the classifica-

tion of the ECSA genotype (Fig 3). For ZIKV, the envelope, NS1, NS2A, NS3, NS4A, NS4B

and NS5 regions had good phylogenetic signal. A detailed overview of the results of the likeli-

hood-mapping analysis can be found in the S2 Table of the Supporting Information.

In summary, these analyses show that the envelope genes of the reference datasets of the

three pathogens (DENV, 1,485 nucleotides; CHIKV, 1,317 nucleotides; ZIKV, 1,525 nucleo-

tides) are the most suitable targets for reliable genotype classification.

Classification performance for whole-genome sequences

Our automated method provided specificity, sensitivity and accuracy of 100% for the identifi-

cation of complete genomes for all viral species and genotypes compared to the gold standard,

a manual classification. For a detailed overview of the DENV, CHIKV and ZIKV assignment

performance, we refer to the Supporting Information S3 Table.

Only ten of 4118 DENV whole-genomes could not be classified at the genotype level, either

by manual phylogenetic analysis or by our automated method. Notably, the seven sequences

(AF298807, KF864667, EU179860, JQ922546, KF184975, KF289073, EF457905 of DENV--

Sero1 were outliers in the phylogenetic tree (see Supporting Information, S1 Fig). We tested all

ten sequences for recombination using boot-scanning (see Supporting Information, S2 Fig)

and the recombination detection program RDP4 [36]. We only found sequence AY496879 to

be a clear recombinant of DENV genotype 3I and 3II. The two other sequences (DENV-Sero2

KF744408 and DENV-Sero3 JF262783) were also identified as a divergent outlier.

Classification performance for sub-genomic regions

Our analysis shows that the classification results for the envelope sub-genomic region at the

species and genotype level were similar to that obtained using whole-genome sequences and

largely in agreement with the gold standard, a manual classification.

For DENV, most of the genotypes were classified with great accuracy (i.e. specificity and

sensitivity > 99%) using the envelope gene. The exception was DENV-sero2 genotype IV, of
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which 41 envelope sequences were available and for which 33 were correctly identified (i.e.

sensitivity 80.49%, specificity 100%). The CHIKV sequences covering the E1 region were accu-

rately classified for all three genotypes (i.e. 100% sensitivity and specificity). All the ZIKV enve-

lope sequences were classified with 100% sensitivity and specificity. For a detailed overview of

Fig 3. Investigating the suitability of sub-genomic regions for genotyping through boot-scanning. This plot was constructed using bootstrap results from

Neighbor Joining trees (1000 bootstrap replicates), performed on the dataset of the indicated reference strains. The boot-scanning method uses a sliding

window of a 1500 base pair segment that moves with steps of 100 base pairs along the genome. The X-axis represents the nucleotide position in the genome,

and the Y-axis represents bootstrap support in percentages. The light-grey rectangular area marks the location of the envelope gene in each graph. The inset

color code shows the genotypes defined in each virus species. For ZIKV (A), this is African and Asian. For CHIKV (B), this is Asian Caribbean (A-C), West

African (WA) and East-Central-South African (ECSA). For DENV (C-F), the genotype is visualized by a Roman numeral. Only genotypes which showed less

than 100% bootstrap support across the genome are shown.

https://doi.org/10.1371/journal.pntd.0007231.g003
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the DENV, CHIKV and ZIKV assignment performance refer to Supporting Information S4

Table.

Since a good phylogenetic signal was reported for the DENV and ZIKV NS5 region and the

CHIKV E2 region, a classification analysis was performed for these regions as well. For the

DENV NS5 region a sensitivity of 57,48% and specificity of 31,35%) was observed. Nearly all

ZIKV NS5 sequences were correctly assigned to the African genotype (i.e. sensitivity of 97.72%

and specificity of 100%). This indicates that the ZIKV NS5 region might also be used for geno-

type classification. For CHIKV, the E2 region showed perfect accuracy, similar to the E1 region

(i.e. specificity and sensitivity of 100%). However, our previous boot-scanning support showed

that the genetically variable E2 region may cause problems for some strains to be correctly

identified as ECSA genotype.

In summary, our results suggest that the envelope region of DENV and ZIKV and the E1

envelope region of CHIKV are suitable for genotyping purposes. In addition, these regions

contain the largest number of sequences in public databases, which easily allows for a wide

range of comparative analyses and validation experiments.

Discussion

Emerging infectious diseases caused by viral pathogens still represent a major threat to public

health worldwide, as recently demonstrated by outbreaks of Ebola, Zika, Middle East Respira-

tory Syndrome (MERS) and Yellow Fever virus. Fast and accurate real-time monitoring of out-

breaks and surveillance of on-going epidemics is crucial to anticipate viral spread and to design

effective prevention or treatment strategies. To this end, an accurate and reliable method for the

classification of ZIKV/DENV/CHIKV arboviruses was developed: The ArboTyping tool.

The ArboTyping tool implements a classification pipeline that consists of a BLAST-based

species assignment and phylogenetic assessment to identify subspecies (i.e. genotypes) with

respect to a set of reference strains, as exemplified for other virus species by previous work

[29–31]. To enable accurate classification, a set of reference sequences that cover the extent of

diversity within species and subspecies, was carefully selected.

The classification performance of the ArboTyping tool was assessed on a dataset of whole-

genome sequences. All whole-genome sequences in this dataset that could be confidently

assigned a species and genotype with the gold standard, a manual classification procedure,

were concordant with the typing tool.

There were, however, 10 sequences that could not be classified using the manual classifica-

tion procedure: further analyses show that these 10 sequences consist out of 3 outlier

sequences, 2 clades of outlier sequences (3 sequences in each outlier clade) and 1 recombinant

sequence. As these outliers have been previously identified [43], these results need to be further

investigated to assess whether these outliers form new genotypes [44].

However, whole-genome sequences are currently not routinely available and the suitability

of the different genomic regions was evaluated with respect to their use for classification. Since

the envelope gene is a popular target for phylogenetic classification, there is a large availability

of envelope sequences in public databases. Therefore, the performance of the ArboTyping tool

was evaluated on a large dataset of envelope sequences (i.e. Global-ENV dataset). For these

envelope sequences, a classification performance close to the tool’s performance on whole-

genome sequences was reported.

While the availability of sequence products originating from other genomic regions is cur-

rently low, it can be expected that these regions will increase in relevance given the interest in

developing antiviral agents that target non-structural proteins. Therefore, more detailed stud-

ies to assess the classification performance of other genomic regions are warranted [44].
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In this manuscript, we focus on the classification of consensus sequences on the species and

sub-species level. However, Genome Detective, the framework in which our tools are inte-

grated, is also a virus discovery toolchain [41]. Genome Detective’s user interface allows users

to supply raw next-generation sequence reads that can be automatically assembled into a con-

sensus and passed to the ArboTyping tool. Details on the methods used to assemble reads in

Genome Detective and an extensive validation using raw NGS reads can be found in [41].

In conclusion, the new method presented here allows the fast, accurate and high-through-

put classification of DENV, CHIKV and ZIKV species and genotypes. Species can be classified

using different sequencing products (i.e. whole-genome sequences, envelope sequences and

individual next-generation sequencing reads) and genotypes can be classified most confidently

when using envelope sequences or whole-genome sequences. This method accommodates the

need to consistently and accurately classify DENV/CHIKV/ZIKV sequences, which is essential

to implement epidemic tracing and to support outbreak surveillance efforts. Additionally, we

present a solid framework that has the potential to serve as the foundation for many other

arbovirus classification tools. These tools are also useful to be integrated in data management

environments [45].

Our method is implemented in the Genome Detective software framework, suitable for

many virus typing tools. The web application that makes our tool available through an easy-to-

use web interface is available online via a dedicated server that is hosted at http://www.krisp.

org.za/tools.php.

Supporting information

S1 Fig. Maximum likelihood phylogenetic tree of the DENV-sero1 outliers. All full genome

DENV-sero1 sequences were assigned to genotype-level using manual phylogenetic analysis

and classification by the automated typing tool. In total, seven full genomes of DENV-sero1

could not be classified at genotype level by either classification method. These seven sequences

are visualized in a phylogenetic tree of the WGS datasets, colored according to genotype. (1I in

blue, 1II in green, 1III in red, 1IV in yellow, 1V in pink) It can be seen that a divergent cluster

of six genomes (AF298807, KF864667, KF184975, EU179860, KF289073 and JQ922546 in

black) form an outlier clade and one genome (EF457905 in black) can be considered an outlier.

However, note that these seven genomes could be properly assigned to serotype 1.

(TIF)

S2 Fig. Recombination analysis for the DENV whole genome sequences. The bootscan results

for the ten whole genomes of DENV that could not be classified at genotype level are shown.

Boot-scanning analysis was performed using a window length of 1500 base pairs and a step size

of 100 base pairs. The different colours represent the genotypes for each serotype. The X-axis

represents the nucleotide position in the genome and the Y-axis represents bootstrap results in

percentages. In total, 7 DENV-sero1 sequences were analysed and 1 sequence for each of the

other serotypes, i.e. DENV-sero2, DENV-sero3 and DENV-sero4. We only found sequence

AY496879 to be a recombinant of DENV genotype 3I and 3II. The other sequences are outliers

(i.e. JF262783, KF744408, EF457905) or clades of outliers (i.e.: AF298807, KF864667 and

KF184975 form an outlier clade; EU179860, KF289073 and JQ922546 form an outlier clade).

(TIF)

S1 Table. Reference strains selected for the DENV, CHIKV, ZIKV genotypes. These refer-

ence sequences were selected to be representative for the diversity within the different DENV,

CHIKV and ZIKV genotypes that circulate within these virus species.

(DOCX)
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S2 Table. Phylogenetic signal estimated by likelihood mapping for DENV (DENV-sero1 to

DENV-sero4), CHIKV and ZIKV sub-genomic regions. Phylogenetic signal was calculated

separately per protein by the likelihood mapping method implemented in the software Tree-

Puzzle. Likelihood mapping analysis computes the likelihood of the three possible trees that

can be constructed from all possible inter-genotype quartets of taxa. The results for the

resolved quartets and unresolved quartets are shown in the table, while the partially resolved

quartets are not listed (can be obtained by 100%—(un)resolved quartets). Partially resolved

quartets represent the quartets for which conflicting phylogenetic signal or potential recombi-

nation is present. Genomic regions for which the percentage of resolved quartets is higher

than 90% are shaded in orange and are considered to be characterized by sufficient phyloge-

netic signal.

(DOCX)

S3 Table. Evaluation of the automated phylogenetic method to classify DENV, CHIKV

and ZIKV whole-genome genomes. The new classification method consists of 2 parts: deter-

mining the species (and for DENV also the serotype) using a BLAST procedure, followed by

determining the genotype using an automated phylogenetic method. Our method was able to

assign all sequences in the whole-genome validation dataset to the right species and DENV

serotype. Therefore, in this table, we focus on the classification performance with respect to

genotype assignment, based on the output of the BLAST step (i.e. a dataset of the proper spe-

cies and serotype). The classification results were compared to manual phylogenetic analysis.

Column names: TP = total positives, TN = total negatives, FP = false positive, FN = false nega-

tive, SENS = sensitivity, SPEC = specificity, ACC = accuracy.

(DOCX)

S4 Table. Evaluation of the automated phylogenetic method to classify DENV, CHIKV

and ZIKV envelope genomes. The new classification method consists of 2 parts: determining

the species (and for DENV also the serotype) using a BLAST procedure, followed by determin-

ing the genotype using an automated phylogenetic method. Our method was able to assign all

sequences in the envelope validation dataset to the right species and DENV serotype. There-

fore, in this table, we focus on the classification performance with respect to genotype assign-

ment, based on the output of the BLAST step (i.e. a dataset of the proper species and serotype).

The classification results were compared to manual phylogenetic analysis. Column names:

TP = total positives, TN = total negatives, FP = false positive, FN = false negative,

SENS = sensitivity, SPEC = specificity, ACC = accuracy.

(DOCX)

S1 File. Accession number of the sequences collected from DENV, ZIKV and CHIKV

whole-genome genomes. A GenBank mining of sequences was performed against whole-

genome genomes of these viruses that had the genotype reported for sensitivity, specificity and

accuracy tests of the tool.

(XLSX)

S2 File. Accession number of the sequences collected from DENV, ZIKV and CHIKV envelope

genomes. A GenBank mining of sequences was performed against envelope genomes of these

viruses that had the genotype reported for sensitivity, specificity and accuracy tests of the tool.

(XLSX)
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43. Libin P., Vanden Eynden E., Incardona F., Nowé A., Bezenchek A.; EucoHIV Study Group, Sönnerborg

A., Vandamme A.-M., Theys K., Baele G.(2017). PhyloGeoTool: interactively exploring large phyloge-

nies in an epidemiological context. Bioinformatics, 33(24):3993–3995. https://doi.org/10.1093/

bioinformatics/btx535 PMID: 28961923
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