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SUMMARY
The Alpha, Beta, andGamma SARS-CoV-2 variants of concern (VOCs) co-circulated globally during 2020 and
2021, fueling waves of infections. They were displaced by Delta during a third wave worldwide in 2021, which,
in turn, was displaced by Omicron in late 2021. In this study, we use phylogenetic and phylogeographic
methods to reconstruct the dispersal patterns of VOCs worldwide. We find that source-sink dynamics varied
substantially by VOC and identify countries that acted as global and regional hubs of dissemination. We
demonstrate the declining role of presumed origin countries of VOCs in their global dispersal, estimating
that India contributed <15% of Delta exports and South Africa <1%–2% of Omicron dispersal. We estimate
that >80 countries had received introductions of Omicron within 100 days of its emergence, associated with
accelerated passenger air travel and higher transmissibility. Our study highlights the rapid dispersal of highly
transmissible variants, with implications for genomic surveillance along the hierarchical airline network.
INTRODUCTION

Since the emergence of SARS-CoV-2 in late 2019, multiple

waves of infection have spread across the world. Successive
Cell 186, 3277–3290,
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waves have been caused typically by new variants, each of

which replaced previously dominant variants due to higher trans-

missibility and/or ability to evade immunity. At the end of 2020,

the first three variants of concern (VOCs), Alpha,1 Beta,2 and
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Gamma3 emerged. Along with some less successful novel line-

ages (termed variants of interest or VOIs), these VOCs were

characterized by a combination of increased intrinsic transmissi-

bility, sometimes enhanced immune evasion capabilities, and

increased pathogenicity.4 Each of the VOCs was associated

initially with increasing SARS-CoV-2 incidence in their presumed

countries of origin: Alpha in the United Kingdom,1,5 Beta in South

Africa2 and Gamma in Brazil.3 In the second quarter of 2021,

these three VOCs started being displaced worldwide by Delta,

a fourth VOC with increased intrinsic transmissibility and patho-

genicity compared with the initial three VOCs. Retrospective

analysis revealed that, as with Alpha and Beta, Delta may have

first arisen between September and October 2020,6 but only

spread globally after it caused a large outbreak in India in March

2021.7 Themost recent VOC, Omicron, was detected first during

a rapid increase in cases in Botswana and South Africa in

November 2021.8

At each stage of the pandemic, global transmission of SARS-

CoV-2 has continued within a context of shifting public health

responses, virus evolution, and dynamic changes in host immu-

nity. The pandemic precipitated unprecedented changes in the

intensity and nature of human mobility, both internationally

through strict restrictions on global travel and nationally via

government-implemented public health and social measures

(PHSMs).9 Although the intention behind initial restrictions on in-

ternational travel was to limit the dispersal of the virus out of the

first outbreak epicenters with a view to possible elimination, they

were later used to attempt to limit or slow the dispersal of VOCs

out of their perceived regions of origin and to reduce epidemic

intensity. Following the global vaccination rollout, travel restric-

tions and other PHSM were gradually lifted in most parts of the

world, bringing travel and mobility patterns back toward levels

seen before the pandemic.10 Regardless of the intensity and

range of travel restrictions, multiple SARS-CoV-2 variants have

disseminated and risen to prominence across large swathes of

the world.

Understanding the global dispersal patterns of SARS-CoV-2

VOCs in the context of local and global human mobility is critical

if we are to objectively evaluate the relative importance of tar-

geted travel restrictions as pandemic prevention and/or control

measures. Fortunately, increased investments in genomic sur-

veillance and data sharing throughout the pandemic have

enabled the effective tracking of VOCs in near real time, mainly

through the GISAID database (https://gisaid.org/).11 Conse-

quently, sufficient genomic sequence data are now available to

enable detailed investigations of past SARS-CoV-2 transmission

dynamics in different locations and at different scales.6,12–17 Yet,

the factors underlying variability in the dissemination of SARS-

CoV-2 VOCs are yet to be fully understood, especially on a global

scale and when comparing all five VOCs.

Here, we combine phylogenetic models that leverage multiple

sets of �20,000 genomes per VOC from >100 countries with

global air passenger data in order to reconstruct the global

spread of each VOC. We investigate the movement dynamics

of each VOC at country and regional levels to determine

source-sink dynamics and establish the regional and global con-

tributions of individual countries to the exportation of VOCs. We

specifically investigate the role of the countries that first reported
3278 Cell 186, 3277–3290, July 20, 2023
an epidemic of each VOC on the global movement dynamics of

VOCs and measure the influence of international travel on VOC

dispersal.

RESULTS

VOC global dissemination patterns
To quantify the global dissemination patterns of each VOC, we

performed ancestral state reconstruction of discrete spatial lo-

cations using dated phylogenetic trees that were inferred from

a subset of representative sampled genomes (for which

sequence sampling locations were known). Genomes were

sampled in proportion to country- and variant-specific case

counts, and analyses were repeated across 10 replicates of

�20,000 randomly sampled genomes per VOC (after accounting

for VOC-specific case counts). Continental source-sink dy-

namics were determined by calculating the net difference be-

tween viral exportation and importation events for each country

and continent (see method details). Given the long duration of

dissemination of certain VOCs, this analysis was performed

both to give an overall assessment for thewhole period (Figures 1

and 2) and to provide insights into the temporal heterogeneity in

the directionality of dispersal (Figures S1A and S1B). A limiting

factor of this analysis is that countries with under-reported inci-

dence and low sequencing proportions,18 but high global con-

nectivity would have beenmissed as important global or regional

VOC disseminators (given the reliance of our methods on

genomic data and underlying testing patterns).

Our analyses reveal distinct global expansion processes for

each VOC. The Alpha, Beta, and Gamma variants co-circulated

globally from November and December 2020 to June and July

2021 (Figure S2). As expected, Europe was a major source of

the Alpha variant, with the UK contributing the highest estimated

number of relative exports to the rest of the world (>2,000;�50%

of Alpha exports; Figure 1) throughout its dissemination period

(Figure S1B). Global expansion can be described as a multi-

stage process—first, at the end of 2020 and beginning of

2021, we estimated that Alpha would spread mostly within Eu-

rope (>3,000 exports between European regions) and from Eu-

rope to the Americas and Asia (>600 exports from Europe).

Most introductions of Alpha to Africa were from Europe or North

America (>60 exports), initially toWest Africa and then to East Af-

rica (Figure 1). Second, between February and May 2021, Alpha

spread within the Americas and Asia, and we observed viral line-

age exchange between East Africa and Asia. During this time,

North America acted as an overall source of Alpha, along with

Europe (Figure S1B). We estimated that Africa’s and South

America’s contributions to global dissemination of Alpha were

minimal, overall. It is important to note that due to subsampling

and uneven sampling, viral importation numbers presented in

this manuscript need to be interpreted as relative measures

and will underestimate the actual number of importations. Addi-

tionally, country-specific differences in testing rates and

sequencing efforts could also introduce potential biases in the

estimated numbers of international exports, particularly when

testing is low or sequencing intensity is much lower in proportion

to recorded cases, where our method would underestimate the

numbers of viral imports and exports.



Figure 1. Spatiotemporal dispersal patterns of VOCs

Global dissemination and continental source-sink dynamics for each VOC, determined from ancestral state reconstruction analysis. Virus lineage exchanges are

aggregated at the sub-continental level, and curves linking any two locations are colored according to the mean dates of all viral movements inferred along this

route. Sub-continental level denominations vary by region, where in some regions they denote countries (e.g., the US and Canada in North America), whereas in

others they denote groups of countries (e.g., western Europe). The curves denote the direction of movement in an anti-clockwise direction. Circles are drawn

proportional to the number of exports per sub-continental location. Source and sink continents are determined by calculating the net difference between viral

exportation and importation events. The absolute numbers of exportation and importation events for each continent per VOC are shown in Figures S3B and S3C.
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Most Beta exportations were from southern Africa (�1,200

estimated exports; �48% of Beta exports), and around half of

those were to locations within the same region (>600 exports)

(Figure 1). We also infer considerable Beta spread from southern

Africa to western Europe (�300 exports) and then within western

Europe (�400 exports). We infer that Asia was a net source of

Beta along with Africa, with exports peaking after April 2021

for Asia (Figure S1B), which is plausible given sizable Beta waves

in some countries in Asia during that time (e.g., Bangladesh and

Cambodia).19 We again observe a multi-stage process of Beta

spread: during the earliest stages between late 2020 and early

2021, Beta was primarily exported from southern Africa into

North America, Europe, and Asia. Later, dispersal from Asia

occurred mostly to Europe and North America, with minimal in-

troductions to South America (Figure 1).
Gamma circulation was first detected in Brazil, where it

caused a large wave of infection between December 2020 and

March 2021.3 From there, Gamma was exported mainly to other

South American countries (�50% of Gamma exports) thro-

ughout the dissemination period (Figure S1B). Only later, be-

tween May and June 2021, do we infer a few instances of

Gamma spread from North America to Europe or from Europe

back to the Americas (Figure 1).

The global spread of Delta was characterized by early expor-

tations from the Indian subcontinent and Russia to other regions

of Asia and all other parts of the world during the first half of 2021

(Figure 1). Russia’s estimated contribution to international Delta

exports (�11% of global Delta exports in our study) is consistent

with previous work inferring dispersal from there based on hu-

man mobility data.6 In the second half of 2021, many more
Cell 186, 3277–3290, July 20, 2023 3279



Figure 2. Regional and global dissemination hubs of VOCs

Largest global and regional contributors to viral exports, stratified by VOC. Countries are shown here if they contribute >0.1% of exports globally or within Europe,

or >0.5% within other regions.
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inferred dispersal events originated from western Europe,

including the UK (>1,100 within western Europe, >300 to central

Europe, and�30 to theUSA, Brazil, and theMiddle East, respec-

tively; Figures 1 and S1B, also in line with previous work6).

Although western Europe demonstrated the largest absolute

number of exportation events of the Delta variant, Europe still

acted as an overall sink (when balancing out comparably large

importation numbers into Europe), and Asia remained a major

net source when considering the net volumes of inbound, as

well as outbound movements of Delta lineages (Figure 1). Given

Delta’s extended period of dissemination globally compared

with Alpha, Beta, and Gamma, it is important to consider the

time variability in exportation patterns for this VOC. From the re-

sults, we observe that, although the majority of exports were

occurring from and within Asia in the initial months of the

dispersal, Europe quickly took over as the largest source of ex-

ports starting in mid-2021 after transmission established there

(Figure S1A). For several months following this, the number of

Delta exports from Europe even exceeded the number of intro-

ductions of the variant into Europe (Figure S2).

We inferred the dispersal patterns of Omicron lineages BA.1

and BA.2 separately, given their genetic distinctiveness, until

March 2022. Although both lineages were detected first in south-

ern Africa at around the same time, their dynamics of global

dissemination differed. Consistent with the first major Omicron
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BA.1 waves occurring in southern Africa, we infer that the earliest

exportation events of BA.1 originated from there during

November and December 2021. Most Omicron BA.1 interna-

tional lineage movement occurred within western Europe

(>2,000) and we infer the timing of those transmissions to be

centered around mid-January 2021 (Figures 1 and S1A). There

was also considerable spread of BA.1 within the Americas

(�500 exports) and fromNorth America to Europe (>800 exports)

during the same time period (Figures 1 and S1A). In comparison

there were only 70 and 191 estimated exportation events from

southern Africa to North America and western Europe, respec-

tively. We estimate that Omicron BA.2 early exportations from

southern Africa were to the Indian subcontinent and to Europe,

also starting in late November 2021 (Figure S1A). Germany, In-

dia, and the UK were the three largest exporters of Omicron

BA.2 overall, with 171, 170, and 100 inferred exports, respec-

tively. Africa received approximately the same number of re-in-

troductions of BA.1 and BA.2 as were originally exported from

the continent (�54 and �60 inferred exports versus �198 and

�88 inferred re-introductions). We infer North America to be

the major source of BA.1 and Asia of BA.2 (Figure 1). Crucially,

this means that the continent where these lineages were first re-

ported did not act as amajor source of the VOC’s global dissem-

ination, particularly after the first couple ofmonths of the duration

of dissemination (Figures 1 and S1B). Although both lineages
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emerged around the same time in late 2021,8 international

dispersal of BA.2 occurred, on average, later than that of BA.1

(Figure 1). This is expected given that, globally, BA.1 expanded

and fueled large epidemic waves before BA.2 and that BA.2

partially evaded BA.1 immunity20 and potentially had a compet-

itive advantage only after BA.1 had spread. Further, some coun-

tries were still experiencing large Delta waves when BA.1 and

BA.2 were imported, possibly slowing their spread (e.g.,

Germany).

Exploring the mechanisms of variant expansion globally, we

observe a small positive effect of the nationally recorded case

incidenceattributed to each variant on the inferred volumesof ex-

ports out of corresponding countries (Figure S3A; Table S1),

although this is partly influenced by the case-sensitive genomic

sampling strategy. We also observe a positive relationship be-

tween the connectivity of countries to global air travel networks

and their inferred contribution to export numbers for all variants

(Figure S3A). However, the effect of air travel passenger volume

had smaller effects on viral export for Beta and Gamma in com-

parison with the other variants (Table S1). This effect is likely a

combination of lower international travel during the time of

dispersal of Beta and Gamma and their emergence in countries

not on the backbone of international flight networks, whereas

Alpha first emerged in a highly connected region. In fact, from

December 2020 to March 2021, the total number of passengers

out of the UK, South Africa, and Brazil was �3.8 million,

�440,000and�860,000, respectively, adding to the understand-

ing of a larger geographical reach of Alpha compared with Beta

and Gamma. As expected, this suggests that both case inci-

dence and mobility play a role in determining the extent to which

a country participates in the global dissemination of variants, un-

less there is co-circulation of different variants in theworld. In this

case, local variant-specific incidence will be a better predictor of

estimated variant exports froma certain country, andmobility will

only matter in regions where a variant is dominant (Figure S3A).

Quantifying regional and global dissemination hubs
Next, we investigated global and regional viral exports to identify

hubs of international dissemination of different VOCs. Our results

reveal that the US was the largest contributor to VOC lineage ex-

portations globally, responsible for�30% of all inferred VOC ex-

ports to other countries, followed by India, the UK, South Africa,

and Germany, which contributed roughly 20%, 12%, 6%, and

5% of global VOC exports, respectively (Figure 2). The share of

contributions to international exportations is highly correlated

with countries’ total air travel passenger volume (Spearman cor-

relation ⍴ = 0.71, p < 0.001, Figure S3D). However, we show that

the role of important global hubs varied among VOCs. For

instance, South Africa acted as a major global hub for viral

exportation for the Beta variant. The US’s role was most visible

for Omicron BA.1 (�75% of US global exports), whereas India’s

share of global exports was dominated by Delta and Omicron

BA.2 (�70% of India’s global exports), and the UK’s by Alpha

(�48%of the UK’s global exports). As with the dispersal patterns

discussed above, the most important inferred contributors to

Omicron dissemination globally were more proximal (from sec-

ondary locations) than distal (from southern Africa). These find-

ings are well supported by reported epidemiological trends.
For example, the US experienced large BA.1 wave in late

November and December 2021 in metropolitan and highly con-

nected cities on the East Coast (Washington, D.C., and New

York City). Similarly, a large number of BA.2 infections were re-

ported from India after it had spread there from southern Af-

rica.21 In fact, because recorded infection numbers were much

higher during Omicron waves (roughly 130 million BA.1 and

110 million BA.2 infections globally within 5 months of circula-

tion) compared with prior VOC waves (e.g., roughly 20 million

Alpha and 90 million Delta infections globally in 10 and

>12 months of circulation, respectively) due to higher transmis-

sibility and relaxed restrictions, we generally infer a higher contri-

bution of global and regional hubs toward the dissemination of

Omicron BA.1 and BA.2 compared with, for instance, Alpha or

Delta, respectively. This dynamic is substantiated by the greater

effect of air travel passenger volume on viral exportation for Om-

icron BA.1 and BA.2, during a time of higher global connectivity,

when compared with the effect of this variable on exports of the

other variants (Table S1). We observe that countries that acted

as major global hubs were also important in disseminating

VOCs regionally (i.e., within the same continent). For example,

Beta and Gammawere variants that mainly expanded regionally,

and we find that the dissemination of these variants in Africa and

South America accounted for >50% of exportations in those re-

gions (Figure 2). A few countries also emerge as large regional

hubs of viral exportations despite low global contributions: for

example, the Philippines and Pakistan in Asia, Colombia in South

America, and Spain and Italy in Europe (Figure 2), potentially

linked to a combination of early seeding, large epidemics, and

passenger numbers.

The inferred networks of viral dispersal that we discuss here

are dynamic, as shown by the heterogeneous patterns when

comparing VOCs. These are likely influenced by localized

epidemic sizes, human mobility, population immunity, and viral

variant phenotypes. Air travel passenger volume was estimated

to have a statistically significant increase in viral exportations for

all variants, with the greatest effect for BA.1 and BA.2 (Table S1).

The number of local cases and deaths for each country also had

a significant, although very small, positive relationship with viral

exports. Although mixed effects were found with the influence

of international travel bans. Generally, the implementation of

stricter travel bans, for example, level 4 of total border closures,

reduced viral exports (except for Alpha) when compared with

level 1 (screening of passengers). These results were not statis-

tically significant for Omicron BA.1 and BA.2, likely because

global circulation of these variants was already occurring before

the implementation of these bans on countries and regions of

presumed origin. An immediate implication of these findings is

that the tendency of countries to act as important global or

regional hubs of viral dissemination is dictated by local case inci-

dence and the countries’ position in the hierarchical global air

travel network,22 which we explore further in the last section of

the results, rather than the location of emergence of variants (Fig-

ure S3A; Table S1).

Role of first-reporting countries in global VOC dispersal
Following the emergence of each VOC, a variety of travel and

passenger quarantine restrictions were put in place.23–25 For
Cell 186, 3277–3290, July 20, 2023 3281



A

B

Figure 3. Inferred origins of global VOC dissemination events

(A) Changes in proportions of all inferred introductions from the country of presumed origin for each VOC (bars) and the number of countries inferred to be acting

as onward sources of each VOC (purple line, with scale in the second y axis). Results shown are determined from 10 replicates of genome subsampling. Error bars

indicate standard deviation.

(B) Date of first inferred introduction per country, shown as circles, colored by location of origin, i.e., presumed origin (blue) or not (orange). The y axis represents

countries, which are ranked and labeled by the median of their dates of first introduction (from 10 replicates). The lower x axis denotes the delay between the

estimatedmedian TMRCA (with confidence interval range dates shown for each VOC, as reported in published studies1–3,6,8,26). The bars on the right side of each

panel represent the cumulative population where the variant has been reported, calculated as the sum of the country populations that have observed in-

troductions up to that point.
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example, travel restrictions were implemented on travel from

South Africa for 291 days after the discovery of Beta, on travel

from South America for 270 days following the discovery of

Gamma, and then again on South Africa for around a month

for Omicron.23 Here, we investigate the inferred sources and

timing of international introductions of VOCs from the place of

first detection and contrast them to importations from all other

locations (UK for Alpha, South Africa for Beta, Omicron BA.1

and BA.2, Brazil for Gamma, and India for Delta).

The main finding for all VOCs is that even though VOC exports

initially occurred mostly from the country of first reporting or pre-
3282 Cell 186, 3277–3290, July 20, 2023
sumed origin, this progressively shifted, and more countries

became sources of exports to other locations as incidence in

other countries increased (Figure 3). We observe that this shift

happened much more rapidly for Delta and Omicron compared

with Alpha, Beta, and Gamma (Figure 3). For Alpha, we find

that by December 2020, roughly 100 days after the estimated

date of emergence of this variant (time to most common recent

ancestor [TMRCA]), around 20 countries, totaling over 2 billion

population, had already received at least one inferred introduc-

tion of the variant (an underestimate of the real number of

introductions) and were themselves acting as sources of
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exportations from established local transmission (Figure 3B).

This suggests wide geographic dispersal and cryptic transmis-

sion by the time travel restrictions were implemented around

December 2020 to control dissemination of Alpha. This was

seen by the positive effect of international travel bans on viral ex-

ports for Alpha (Table S1), whereas travel bans were found to

reduce viral exports for the other variants. This pattern of gradual

shift of the inferred source away from the presumed country of

origin is similar for Beta and Gamma, the only difference being

the lower number of countries, cumulating less than 1 billion

population, inferred to have received an introduction of Gamma.

Of all introductions to other locations that we infer, the UK

contributed 48% of Alpha, South Africa contributed 37% of

Beta, and Brazil contributed 60% of Gamma (Figure 3A).

The pattern is different from Delta and Omicron BA.1 and BA.2

lineages: India and South Africa, the presumed countries of

origin of Delta and Omicron, respectively, very rapidly transi-

tioned to being minor sources of both the first and overall intro-

ductions of these VOCs to other countries. In the case of Delta,

fewer than 15%of all introductions to other countries were attrib-

uted to India (Figure 3A). Although India’s contribution to first and

overall Delta introductions did not completely subside over time,

it decreased due to the contribution of other countries as a

source of Delta. The shift away from the presumed location of

origin is even more marked for Omicron BA.1 and BA.2. Overall,

we infer that South Africa was the source of fewer than 1% and

2%of BA.1 and BA.2 introductions globally (Figure 3A).We show

that within the first week (early November 2021) of BA.1 and BA.2

global dissemination, the first introductions to other countries

were already originating from places other than South Africa.

We also observe from the temporal reconstructions of these

events that by the time travel restrictions were placed against

southern Africa in December 2021, Omicron BA.1 exports could

already be inferred from more than 30 other countries, cumu-

lating over 2 billion population. Additionally, 100 days after the

estimated TMRCA of Omicron BA.1 and BA.2, we could already

infer introductions into more than 80 and 60 countries, respec-

tively, in stark contrast to the dispersal of the other VOCs during

the same time frame (Figure 3B).

For all the variants investigated here, the results point to the

diminishing importance through time to the international

dispersal of VOCs from the first presumed origin. This shift

was more rapid with Delta and even more so with Omicron,

potentially due to increased transmissibility of these variants,

as well as fewer restrictions on travel and fewer PHSMs in

many places, meaning higher and more sustained local trans-

mission and thus more opportunity for onward spread. These

conditions allowed these VOCs to reach other countries more

rapidly, often even before first detection of the variants by virus

genome sequencing and in all cases before any travel restric-

tions were implemented. The fact that this phenomenon is

even more notable for Omicron could further be explained by

a considerable increase in international travel volumes at the

end of 2021, whereas travel bans against southern African

countries were implemented very rapidly following the first

report of Omicron emergence. These findings must be consid-

ered in light of the sensitivity of inferring VOC importation ori-

gins using genomic data alone, which can be impacted by
sampling bias, especially during the earliest phase of VOC

emergence. Inferences can be improved by using independent

data sources (e.g., estimated importation intensity [EII]

presented in McCrone et al.6) or by integrating individual travel

histories from genomic sequence data.27

Impact of international travel on VOC dispersal
The transmission of SARS-CoV-2 was accompanied by major

shifts in humanmobility patterns throughout the pandemic.10,15,28

In addition to national lockdowns restricting local movements and

mixing, varying levels of air passenger travel restrictions were im-

plemented in response to the initial emergence of SARS-CoV-2

and subsequent waves of transmission. In reconstructing the

global dispersal of VOCs, the substantial decreases and more

recent increases in international air travel might explain the varia-

tion in dispersal of VOCs alongside differences in immunity and

vaccination. To examine how air travel has influenced the speed

of dissemination of VOCs worldwide, we investigated global air

travel passenger volumes between February 2020 and March

2022 and the network structure of the global airline network and

compared them with the speed of dispersal of VOCs in countries

reporting VOCs using genomic data. This delay was quantified

here as the number of days between the TMRCAs (median) of

each VOC (Omicron BA.1 and BA.2 separately) from published

studies (Table S2) and the date of collection of the first sequenced

VOC sample in each country (source: GISAID).

We find that, among countries, the Alpha, Beta, and Gamma

variants were first sampled for sequencing on average 64–425,

95–300, and 48–251days (5th–95th percentiles), respectively, af-

ter their emergence (Figure 4A, network visualization for Alpha

shown in Figure S4A). On average, it took longer for countries

to first sequence the Delta variant, with a delay of 45–336 days

(5th–95th percentiles) after its estimated date of emergence in

October 20206 (Figure 4A, network visualization for Delta shown

in Figure S4B). The relatively longer delay between emergence

anddatesof sequencing canbepotentially explainedby the rapid

spreadof theAlpha,Beta, andGammavariants during that time in

other countries and the relatively longer period between emer-

gence and rapid spread of Delta in India prior to global dissemi-

nation.7 In the case of Omicron, both the BA.1 and BA.2 lineages

dispersed around the world much faster than did the preceding

VOCs. Omicron BA.1 and BA.2 were sampled on average just

7–98 days and 28–186 days (5th–95th percentiles), respectively,

after their emergence (Figure 4A). This was likely strongly influ-

enced by a 3-fold increase in global air travel passenger volumes,

to �60 million per month during the spread of Omicron,

compared with �20 million per month a year before during the

time when the Alpha, Beta, Gamma, and Delta variants dissemi-

nated (Figure 4A). Additionally, it is now well known that Omicron

lineages were highly immune evasive, causing infections globally

at much higher rates (see also next section).

To explore more specifically the relationship between global air

travel and the velocity of global VOC dispersal, we calculated

pairwise correlations between sampling delays for each country

for each VOC against a measure of distance along the most

probable path connecting two countries (hereafter referred to as

effective distance, Deff), the total incoming travel volumes to that

country during the time of VOC dispersal, and incoming travel
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Figure 4. Impact of global air travel on VOC dissemination

(A) Delay (number of days since TMRCA) of each VOC to be first sampled in countries around the world, total global monthly air passenger volumes from

September 2020 toMarch 2022, and the number of countries with active travel bans in the same period (data are sourced from the Oxford COVID-19 Government

Response Tracker project [https://github.com/OxCGRT/covid-policy-tracker], where countries with international travel controls of levels 3 or 4 were counted as

having travel bans in place). The corresponding mean of each violin plot is shown. The dot and error bars inside each group denote the median and interquartile

range, respectively. Dates of VOC origin are taken as their published mean estimated dates of emergence (TMRCA), with crosses representing the median and

high confidence range values.1–3,6,8,26 The date of arrival of each VOC per country is taken to be the first sampling date of a sequenced case in GISAID (date of

access: 18 September 2022).

(B) The shortest path tree constructed using global air traffic data from Oct-2020, with India (left) and the United Kingdom (right) as the presumed origin location

(OL). Each node represents a country and is colored according to the continent. The radial distance of each node from the presumed OL along the connecting

branches represents the effective distance Deff.
22 The radius of each node scales with the number of descendant nodes (out-degree).

(C) Scatterplot and Spearman’s rank correlation coefficient of the effective distance Deff against delay in first sampling of VOCs in countries globally. The cor-

relation coefficient is indicated for each VOC, with the level of significance indicated by the number of asterisks. A best-fit line is shown for each VOC, with the

shaded band indicating 95% confidence interval.

ll
OPEN ACCESS

3284 Cell 186, 3277–3290, July 20, 2023

Article

https://github.com/OxCGRT/covid-policy-tracker


A

B

(legend on next page)

ll
OPEN ACCESS

Cell 186, 3277–3290, July 20, 2023 3285

Article



ll
OPEN ACCESS Article
volumes from the presumed origin country only for each VOC. The

effective distance (seemethod details) is ameasure of how likely a

randomly chosen individual in an origin country is to travel to

another country via the most probable path given the underlying

mobility network, which in our case is the global airline network

(Figure 4B).Weobserve large differences in the airline network de-

pending on the origin location, but rather surprisingly not between

October 2020 and 2021 (Figure S5); for example, India (Figure 4B)

connects to large hubs, which then connect to many countries,

whereas the UK has a more star-like network structure with direct

connections to many countries in the world. This is also reflected

when comparing the effective distance, with passenger flows

showing larger differences when considering India as the origin

node vs. the UK (Figure S6A). Using this measure, we find that

the delay of the first sample of VOCs is positively correlated with

the effective distance (Figure 4C). The association between arrival

times of VOCs and passenger volumes is comparable but slightly

weaker (Table S3). However, for Omicron BA.1 and BA.4/5, the

effectivedistancemeasure isable tobetterpredict thearrival times

as compared with using the raw travel volumes from South Africa

(Spearman’s rank correlation 0.47 vs. 0.59 and 0.39 vs. 0.52,

respectively), pointing toward a larger contribution from major

transit hubs in the global dissemination than in the case of Alpha,

Delta, and Gamma. This further supports previously discussed

findings that locations other than the presumed origin quickly

became exporters of viral lineages for a highly transmissible

variant. Interestingly, for the Delta variant, we observe a substan-

tially longer than expected delay in first sampling in the United

Arab Emirates (ARE), despite its relatively small effective distance

from India (the presumedorigin location ofDelta) and that it acts as

a transit nodebetween theshortestpaths fromIndia tomanycoun-

tries in Asia and Africa (Figure 4B, left). This suggests that ARE

potentially actedasanepidemiologically important yet undetected

secondary hub in the global dissemination of the Delta variant,

likely as a result of its very low sequencing intensity with only

2,630 sequences uploaded to GISAID since the beginning of the

pandemic. To lend further support to this hypothesis, we per-

formed a sensitivity analysis by removing ARE from the global air

traffic network and recomputing the effective path from India to

each country—although substantial changes to the shortest path

tree are observed as a result of the removal of ARE, the predicted

arrival times of Delta according to the new effective distances are

not significantly different from those before ARE was removed

(Figures S6B and S6C). The observed arrival times of Delta are

therefore inconclusive as evidence of ARE being a major second-

ary transit node in the global dissemination of the variant—future

work should consider the variance of the shortest path tree given

the observed air traffic network and therefore the statistical

confidence of the topological position of each node in the tree.
Figure 5. Continental epidemiology of SARS-CoV-2 cases, mortality, te

(A) The progression of daily reported cases per continent from February 2020 to O

case numbers is colored by the inferred proportion of variants responsible for the in

October 2022) averaged over 20 days. The line shows the 7-day rolling average of t

second y axis) aggregated for countries for which these data are available for ea

(B) The 7-day rolling average of daily reported deaths colored by the inferred prop

20 days between infection and death applied (see more details in method details

(scale on second y axis), where those that received all doses prescribed by the i
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Global epidemic and variant dynamics
In addition to the distinct dispersal dynamics described above,

VOCs emerged in globally heterogeneous epidemiological land-

scapes (Figure 5). Variations in epidemic intensity around the

world were further exacerbated by uneven diagnostic testing

rates (Figure 5A), distinct levels of population immunity as the

pandemic progressed (either vaccine or infection acquired),

and variation in geographical and temporal drivers of transmis-

sion. Despite underreporting of infection numbers,29 combining

death, genomic surveillance, and testing data provides qualita-

tive insights into the differences in epidemic waves across con-

tinents (Figure 5). Although Alpha, Beta, and Gamma expanded

regionally, Delta andOmicron swept across the globe, becoming

dominant worldwide in mid-late 2021 and early 2022, respec-

tively (Figure 5A).

Throughout the different waves of infection, we observe a

marked difference in reported mortality in Africa, Asia, and Oce-

ania compared with Europe and South and North America (Fig-

ure 5B). This is likely due to a combination of under-reported

mortality in Africa and Asia, as suggested by high levels of

modeled excess deaths,29 and low virus circulation in Oceania

due to prolonged border closures in earlier stages of the

pandemic.30,31 Despite high vaccination coverage and acceler-

ated booster rollout during the emergence of BA.1 (Figure 5B),

case incidence increased rapidly (Figure 5A) in the context of re-

laxing non-pharmaceutical interventions (NPIs) across the world.

The high number of cases meant considerable mortality, espe-

cially in those few locations with no or low immunity, due to a

combination of low population exposure to the virus and low

vaccination rates in high-risk groups, for example, in Hong

Kong.32 In absolute numbers, Oceania and North and South

America all experienced higher mortality due to Omicron BA.1

than Delta. Vaccine inequity exacerbated the inability to protect

even high-risk groups in many places at this stage, particularly in

the context of low vaccination coverage in Africa (Figure 5B).

DISCUSSION

Our study shows that SARS-CoV-2 VOCs (Alpha, Beta, Gamma,

Delta, and Omicron BA.1 and BA.2) disseminated around the

world according to different spatial source-sink dynamics and

that global travel hubswere important contributors to viral expor-

tations. The international spread of Delta and Omicron was sub-

stantially different from that of Alpha, Beta, and Gamma. The

dispersal of Delta and Omicron was in general more multi-focal,

with multiple regions contributing to their global invasion. Also,

Australia contributed to viral exchanges for Delta and Omicron

(unlike for Alpha, Beta, and Gamma), consistent with published

reports of Delta introductions despite quarantine measures
sting, and vaccination

ctober 2022 (log scale, first y axis). The 7-day rolling average of daily reported

fections, as calculated by genomic surveillance data (GISAID date of access: 1

he number of daily tests per thousand population per region (scale shown in the

ch continent.

ortion of variants, as calculated for case data, with an assumption of time lag of

). The dashed line displays the proportion of people fully vaccinated per region

nitial vaccination protocol are considered fully vaccinated.



ll
OPEN ACCESSArticle
and the opening of borders for non-Australian citizens prior to the

Omicron wave.33–35 These differences reflect both the distinct

global landscapes at different stages of the pandemic, and the

intrinsic characteristics of different variants. Alpha, Beta, and

Gamma circulated in more restricted sets of locations, whereas

Delta and Omicron dominated infections in a global sweep. The

period during which Alpha, Beta, and Gamma emerged was

characterized by lower global mobility and widespread travel re-

strictions, whereas the gradual lifting of such restrictions was

associated with the more rapid and widespread Delta and

Omicron disseminations.6

We also investigated the role of the presumed origin location of

each VOC (the countries that first reported each variant) in the

global dispersal of these viruses. Although we infer that the

UK, South Africa, and Brazil were the source of the majority of

global exportations of Alpha, Beta, and Gamma (all >35%), we

find that for Delta and Omicron, the contribution of the presumed

origin location was much smaller (<15%). We observe differ-

ences in the speed at which countries that are not the presumed

origins became exporters of the VOC. For Delta and Omicron,

this rapid transition is attributed to a mix of increased transmis-

sibility and increased global air travel. Our results should be

viewed in the context of a country’s epidemiological landscape.

The pattern that we present, however, highlights that locations

with high case incidence and global connectivity have the poten-

tial to become major contributors to variant exportations if early

seeding of viral variant outbreaks is not controlled.

SARS-CoV-2 variants continue to emerge and spread world-

wide, as seen most recently in the case of the Omicron BA.4

and BA.5 lineages26 and sub-lineages. In this context, our find-

ings have some general implications for public health. First, we

show that once a variant has been established in multiple coun-

tries, continued international spread may almost be inevitable.

When specific routes are closed due to travel restrictions, other

locations become responsible for a greater share of global

dissemination. This indicates that in the case of emerging vari-

ants, especially those with enhanced virulence and waning im-

munity, actions to control or mediate the effects of virus trans-

mission should be undertaken everywhere. Second, our results

indicate that travel restrictions, especially targeted ones, are

often implemented after initial imports have already come into

other countries, especially for more transmissible variants, as

discussed elsewhere.25,36 To limit the extent of local transmis-

sion, a combination of measures is necessary, including testing

at arrival, antigen testing before large gatherings, isolation while

infectious, and vaccination, among others.37 Lastly, as global air

travel and human mobility return to pre-pandemic levels and

beyond, new variants are likely to reach secondary countries

much faster, potentially before being identified by genomic sur-

veillance. Despite the massive effort of genomic sequencing

globally, the nature of respiratory viruses such as SARS-CoV-2

and especially highly transmissible VOCs means that testing

and genomic surveillance will often struggle to detect a new

variant and determine its significance before there is ample op-

portunity for wide dispersal.38 This makes targeted travel restric-

tions increasingly ineffective, and continued investment and

innovation in robust, fast, and systematic diagnostic and surveil-

lance programs is crucial for current and future pathogens. For
example, targeted genomic surveillance can be informed by a lo-

cation’s position in the hierarchical global air travel network.

Future work to document the extent of the impact of the global

spread of VOCs could additionally consider local contexts in

relation to VOC characteristics, including population immunity

profiles, whether acquired through vaccination or through previ-

ous infection waves of particular variants, parameters of waning

immunity related to the duration of time since the last wave, and

local control measures. By systematically analyzing large repre-

sentative datasets for each variant, this study highlights the role

of global and regional hubs in viral dispersal while contrasting it

with targeted travel restrictions toward the presumed origins of

VOCs. Using travel data, we discuss that novel emerging

VOCs with a clear transmission advantage are likely to spread

much faster around theworld given today’s increase in travel vol-

umes. Overall, the global-scale spatiotemporal invasion patterns

described here provide an opportunity to integrate knowledge of

viral exportation and importation dynamics into our collective un-

derstanding of pandemic progression. This will be critical both in

managing the upcoming stages of global SARS-CoV-2 transmis-

sion and within preparedness plans for future epidemics.

Limitations of the study
The findings presented here are derived primarily from phylo-

geographic analysis and have several limitations. Our genomic

sampling was informed by the timing and size of epidemics

per country to avoid over-representing countries with more

sequencing and to focus inferences on a subset of sequences

that most accurately represents routine surveillance of local

transmission rather than possible targeted sequencing of

travel-related cases or over-sequencing at the beginning of

waves (method details). However, we cannot rule out remaining

biases in our datasets, particularly those associated with uneven

testing rates and case reporting globally. With this method of

sampling, it is also not possible to unambiguously identify the

very first introductions of VOCs, especially if they are associated

with sustained cryptic transmission before an increase in variant-

related cases is noted. We also rely on national genomic surveil-

lance data to scale reported cases to variants, and we recognize

biases arising from that, including possible uneven representa-

tion of incidence from subregions of countries, and non-uniform

sequencing proportions at various stages of the pandemic.

Furthermore, the global and continental view taken in our anal-

ysis will obscure fine-scale epidemiological heterogeneity within

countries. In order to best represent VOC epidemics worldwide,

we performed phylogenetic inferences on datasets of roughly

20,000 genomes for each VOC, in replicates of 10. Given the

size of these datasets, we were not able to employ full Bayesian

phylogeographic reconstructionmethods given the availability of

computational resources. This would mostly affect the precise

timing of inferred ancestral state changes per country; however,

the very dense sampling of virus genomes through time puts

some strong temporal constraints on when a state change can

occur. Finally, our analysis focuses on the global spatiotemporal

invasion of VOCs and does not attempt to study the impact on

epidemic growth in countries that do receive an introduction of

these VOCs. Therefore, we cannot make a causal claim between

the size of the epidemic wave in the destination country and the
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number of viral introductions and travel volumes. Other studies

have shown that local measures in the destination country influ-

ence the control of waves more than the number of seeding

events.6
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ing transmissibility of SARS-CoV-2 lineage B.1.1.7 in England. Nature.

https://doi.org/10.1038/s41586-021-03470-x.

6. McCrone, J.T., Hill, V., Bajaj, S., Pena, R.E., Lambert, B.C., Inward, R.,

Bhatt, S., Volz, E., Ruis, C., Dellicour, S., et al. (2022). Context-specific

emergence and growth of the SARS-CoV-2 Delta variant. Nature 610,

154–160. https://doi.org/10.1038/s41586-022-05200-3.

7. Dhar, M.S., Marwal, R., Vs, R., Ponnusamy, K., Jolly, B., Bhoyar, R.C., Sar-

dana, V., Naushin, S., Rophina, M., Mellan, T.A., et al. (2021). Genomic

characterization and epidemiology of an emerging SARS-CoV-2 variant

in Delhi, India. Science 374, 995–999. https://doi.org/10.1126/science.

abj9932.

8. Viana, R., Moyo, S., Amoako, D.G., Tegally, H., Scheepers, C., Althaus,

C.L., Anyaneji, U.J., Bester, P.A., Boni, M.F., Chand, M., et al. (2022).

Rapid epidemic expansion of the SARS-CoV-2 Omicron variant in south-

ern Africa. Nature 603, 679–686. https://doi.org/10.1038/s41586-022-

04411-y.

https://doi.org/10.1016/j.cell.2023.06.001
https://doi.org/10.1016/j.cell.2023.06.001
https://doi.org/10.1093/ve/veac080
https://doi.org/10.1038/s41586-021-03402-9
https://doi.org/10.1126/science.abh2644
https://doi.org/10.1126/science.abh2644
https://doi.org/10.1038/s41576-021-00408-x
https://doi.org/10.1038/s41586-021-03470-x
https://doi.org/10.1038/s41586-022-05200-3
https://doi.org/10.1126/science.abj9932
https://doi.org/10.1126/science.abj9932
https://doi.org/10.1038/s41586-022-04411-y
https://doi.org/10.1038/s41586-022-04411-y


ll
OPEN ACCESSArticle
9. Brauner, J.M., Mindermann, S., Sharma, M., Johnston, D., Salvatier, J.,

Gaven�ciak, T., Stephenson, A.B., Leech, G., Altman, G., Mikulik, V.,

et al. (2021). Inferring the effectiveness of government interventions

against COVID-19. Science 371. https://doi.org/10.1126/science.

abd9338.

10. Tegally, H., Khan, K., Huber, C., de Oliveira, T., and Kraemer, M.U.G.

(2022). Shifts in global mobility dictate the synchrony of SARS-CoV-2

epidemic waves. J. Travel Med. 29. https://doi.org/10.1093/jtm/

taac134.

11. Shu, Y., and McCauley, J. (2017). GISAID: global initiative on sharing all

influenza data - from vision to reality. Euro Surveill. 22, 30494. https://

doi.org/10.2807/1560-7917.ES.2017.22.13.30494.

12. Hodcroft, E.B., Zuber, M., Nadeau, S., Vaughan, T.G., Crawford, K.H.D.,

Althaus, C.L., Reichmuth, M.L., Bowen, J.E., Walls, A.C., Corti, D., et al.

(2021). Spread of a SARS-CoV-2 variant through Europe in the summer

of 2020. Nature 595, 707–712. https://doi.org/10.1038/s41586-021-

03677-y.

13. Lemey, P., Ruktanonchai, N., Hong, S.L., Colizza, V., Poletto, C., Van den

Broeck, F., Gill, M.S., Ji, X., Levasseur, A., Oude Munnink, B.B., et al.

(2021). Untangling introductions and persistence in COVID-19 resurgence

in Europe. Nature 595, 713–717. https://doi.org/10.1038/s41586-021-

03754-2.

14. Rito, T., Richards, M.B., Pala, M., Correia-Neves, M., and Soares, P.A.

(2020). Phylogeography of 27,000 SARS-CoV-2 genomes: Europe as the

major source of the COVID-19 pandemic. Microorganisms 8. https://doi.

org/10.3390/microorganisms8111678.

15. Kraemer, M.U.G., Hill, V., Ruis, C., Dellicour, S., Bajaj, S., McCrone, J.T.,

Baele, G., Parag, K.V., Battle, A.L., Gutierrez, B., et al. (2021). Spatiotem-

poral invasion dynamics of SARS-CoV-2 lineage B.1.1.7 emergence. Sci-

ence 373, 889–895. https://doi.org/10.1126/science.abj0113.

16. Wilkinson, E., Giovanetti, M., Tegally, H., San, J.E., Lessells, R., Cuadros,

D., Martin, D.P., Rasmussen, D.A., Zekri, A.-R.N., Sangare, A.K., et al.

(2021). A year of genomic surveillance reveals how the SARS-CoV-2

pandemic unfolded in Africa. Science 374, 423–431. https://doi.org/10.

1126/science.abj4336.

17. Tegally, H., San, J.E., Cotten, M., Moir, M., Tegomoh, B., Mboowa, G.,

Martin, D.P., Baxter, C., Lambisia, A.W., Diallo, A., et al. (2022). The

evolving SARS-CoV-2 epidemic in Africa: insights from rapidly expanding

genomic surveillance. Science 378, eabq5358. https://doi.org/10.1126/

science.abq5358.

18. Brito, A.F., Semenova, E., Dudas, G., Hassler, G.W., Kalinich, C.C.,

Kraemer, M.U.G., Ho, J., Tegally, H., Githinji, G., Agoti, C.N., et al.

(2022). Global disparities in SARS-CoV-2 genomic surveillance. Nat. Com-

mun. 13, 7003. https://doi.org/10.1038/s41467-022-33713-y.

19. Rahaman, M.M., Sarkar, M.M.H., Rahman, M.S., Islam, M.R., Islam, I.,

Saha, O., Akter, S., Banu, T.A., Jahan, I., Habib, M.A., et al. (2022).

Genomic characterization of the dominating Beta, V2 variant carrying

vaccinated (Oxford-AstraZeneca) and nonvaccinated COVID-19 patient

samples in Bangladesh: A metagenomics and whole-genome approach.

J. Med. Virol. 94, 1670–1688. https://doi.org/10.1002/jmv.27537.

20. Zou, J., Kurhade, C., Xia, H., Liu, M., Xie, X., Ren, P., and Shi, P.Y.

(2022). Cross-neutralization of omicron BA.1 against BA.2 and BA.3

SARS-CoV-2. Nat. Commun. 13, 2956. https://doi.org/10.1038/s41467-

022-30580-5.

21. Dhawan, M., Priyanka, and Choudhary, O.P. (2022). Emergence of Omi-

cron sub-variant BA.2: is it a matter of concern amid the COVID-19

pandemic? Int. J. Surg. 99, 106581. https://doi.org/10.1016/j.ijsu.2022.

106581.

22. Brockmann, D., and Helbing, D. (2013). The hidden geometry of complex,

network-driven contagion phenomena. Science 342, 1337–1342. https://

doi.org/10.1126/science.1245200.

23. Mendelson, M., Venter, F., Moshabela, M., Gray, G., Blumberg, L., de Oli-

veira, T., andMadhi, S.A. (2021). The political theatre of the UK’s travel ban
on South Africa. Lancet 398, 2211–2213. https://doi.org/10.1016/S0140-

6736(21)02752-5.

24. Schermerhorn, J., Case, A., Graeden, E., Kerr, J., Moore, M., Robinson-

Marshall, S., Wallace, T., Woodrow, E., and Katz, R. (2022). Fifteen days

in December: capture and analysis of Omicron-related travel restrictions.

BMJ Glob. Health 7. https://doi.org/10.1136/bmjgh-2022-008642.

25. Kucharski, A.J., Jit, M., Logan, J.G., Cotten, M., Clifford, S., Quilty, B.J.,

Russell, T.W., Peeling, R.W., Antonio, M., and Heymann, D.L. (2022).

Travel measures in the SARS-CoV-2 variant era need clear objectives.

Lancet 399, 1367–1369. https://doi.org/10.1016/S0140-6736(22)00366-X.

26. Tegally, H., Moir, M., Everatt, J., Giovanetti, M., Scheepers, C., Wilkinson,

E., Subramoney, K., Makatini, Z., Moyo, S., Amoako, D.G., et al. (2022).

Emergence of SARS-CoV-2 Omicron lineages BA.4 and BA.5 in South Af-

rica. Nat. Med. 28, 1785–1790. https://doi.org/10.1038/s41591-022-

01911-2.

27. Lemey, P., Hong, S.L., Hill, V., Baele, G., Poletto, C., Colizza, V., O’Toole,
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RESOURCE AVAILABILITY

Lead Contact
Further information and requests for data and resources should be directed to and will be fulfilled by the Lead Contact, Houriiyah

Tegally (houriiyah.tegally@gmail.com).

Materials Availability
This study did not generate new unique reagents, but raw data and code generated as part of this research can be found on public

resources as specified in the data and code availability section below.

Data and Code Availability
The findings of this study are based on sequences andmetadata associated with a total of 514,831 sequences collected in 141 coun-

tries and territories available on GISAID up to November 19, 2022, via gisaid.org (GISAID: EPI_SET_230221dt). All genome se-

quences and associated metadata in this dataset are published in GISAID’s EpiCoV database. To view the contributors of each in-

dividual sequence with details such as accession number, Virus name, Collection date, Originating Lab and Submitting Lab and the

list of Authors, visit https://doi.org/10.55876/gis8.230221dt. Custom data sources and scripts to reproduce the results of this study

are publicly shared on GitHub (https://github.com/CERI-KRISP/SARS_CoV_2_VOC_dissemination). The repository contains all of

the time scaled ML tree topologies, annotated tree topologies as well as custom data analysis and visualization scripts. Other data-

sets and pipelines used in this study are openly available and described in the method details section.

METHOD DETAILS

Epidemiological Data and Genomic Prevalence
We analyzed trends in daily numbers of cases of SARS-CoV-2 and reported deaths for each continent up to 1 October 2022 from

publicly released data provided by the Our World in Data repository (https://github.com/owid/covid-19-data/tree/master/public/

data). To provide a comparable view of epidemiological dynamics over time in different continents, the variable under primary consid-

eration for Figure S13 was ‘new cases per million’ and ‘new deaths per million’. Genomic metadata was downloaded for all entries on
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GISAID for the same time period (date of access: 1 October 2022). From this, information extracted from all entries for this study

included: date of sampling, continent of sampling, viral lineage and clade.

We calculate the rolling average of daily case and deaths numbers for each variant by inferring the daily proportion of variants

responsible for infections, as calculated by genomic surveillance data on GISAID. A lag time of 17.4 to 24.7 days (median = 20)

was applied between the calculated genomic prevalence and recorded deaths, as reported in published literature.46 A smoothing

factor of 20 was used to calculate the rolling averages for case numbers, but the smoothing factor used of death numbers varied

according to the consistency of the data, as follows: Africa k = 20, Asia k = 20, Europe k = 14, Oceania k = 22, North America k =

14, South America k = 22.

Vaccination statistics per continent and testing and positivity datasets per country were also obtained from Our World in Data.

Overall continental data is not available in the dataset for the testing and positivity rate, and was therefore calculated from countries

for each continent with available data. The proportion of people fully vaccinated per region was calculated with the number of people

fully vaccinated, defined as having received all doses prescribed by the initial vaccination protocol, and the population size data pro-

vided by Our World in Data.

Genomic sampling
Due to the sensitivity of ancestral state reconstruction methods to sampling bias, we performed our selection of genomic se-

quences in a careful manner to minimize biases to an extent that sampled datasets broadly reflect global reported case counts.

From the complete set of entries for each VOC available on GISAID (Date of access: 17 September 2022), our subsampling strat-

egy selected sequences to correspond to timeframes of global circulation of the respective VOCs, and in proportion to recorded

cases in different countries. We used a previously described method subsampler (https://github.com/andersonbrito/subsampler)39

to produce such globally representative subsets for each VOC. This method subsamples sequences per country based on case

counts over the study period to ensure the random sample is both geographically, temporally and epidemiologically representa-

tive. In short, subsampler requires the sequence metadata for the complete dataset from which the subsampling occurs, along

with a case count matrix, which we scaled for each VOC to their estimated prevalences for different countries based on

GISAID data. This subsampling scheme was performed ten times using ten unique random number seeds for each VOC to pro-

duce ten randomly sampled genomic datasets per VOC. Subsampling within this scheme is performed using a baseline function,

which represents the proportion of cases that the user wishes to sample. This was changed accordingly to produce datasets of

approximately 20,000 sequences for each VOC. It is important to note here that due to country-specific sequencing efforts, some

countries may not have sequenced enough cases to reach the desired sampling proportion stated by the baseline function. These

countries are flagged as undersampled by showing negative values in the corresponding weekly sampling bias output file pro-

duced by this software. As a sensitivity analysis, we also performed this subsampling step using recorded COVID-19 deaths rather

than case counts for Alpha, Beta and Gamma, to ascertain potential biases of testing rates in the resulting sampling proportions.

We found that the sampling proportions for each country remains consistent whichever strategy is used and opt to perform the

rest of the analysis with case sampling (Figures S7A–S7C). Due to the genetic distance between the BA.1 and BA.2 Omicron var-

iants, these two sub-lineages were split in downstream analyses and in this subsampling procedure. To minimize the potentially

confounding effects of recombination on downstream phylogenetics-based analyses (which assume sequences are evolving in the

absence of recombination), potential recombinant sequences were detected in the BA.1 and BA.2 subsets using RDP5.23.40 Spe-

cifically each of the ten BA.1 and BA.2 specific datasets were analyzed using default RDP options other than that sequences were

considered to be linear. Sequences flagged for signs of recombination with an associated P-value of 0.05 or lower were removed

from the datasets. The final datasets for each VOC replicate contained the following numbers of sequences, corresponding to the

specified date ranges to match relevant periods of circulation of each variant:

Dataset date ranges (sampling dates):

Alpha: n = 21,280, dates = 2020-10-19 - 2021-07-11

Beta: n = 22,669, dates = 2020-08-19 - 2021-08-07

Gamma: n = 21,331, dates = 2020-09-11 - 2021-09-22

Delta: n = 17,463, dates = 2020-09-07 - 2021-12-23

Omicron BA.1: n = 18,732, dates = 2021-11-17 - 2022-03-08

Omicron BA.2: n = 18,766, dates = 2021-11-27 - 2022-03-15

Phylogenetic reconstruction
For each of the ten replicates per VOC, we produced time scaled tree topologies and performed discrete ancestral state reconstruc-

tion (of locations) to infer the global dissemination of each variant. Sequences were aligned using NextAlign (https://github.com/

neherlab/nextalign) and Maximum-likelihood tree topologies were inferred using FastTree v.241 under a GTR model of nucleotide

substitution. The resulting tree topologies were inspected for temporal molecular clock signals using the clock functionality of Tree-

Time.42 ML-trees were then transformed into time scaled phylogenies in TreeTime using a standard mutation rate of 0.0008 substi-

tutions per site per year and a standard clock deviation of 0.0004, and using the –confidence flag to get the 90%maximum posterior

lower and upper bounds of divergence time estimates and confidence in state transitions in downstreammugration analysis. (Using a

standard mutation rate resulted in inferences with better confidence compared to using an adjusted mutation rate for each VOC as
e2 Cell 186, 3277–3290.e1–e5, July 20, 2023
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determined in a root-to-tip regression analysis (Figures S7D and S7E).) Outlier sequences that deviated from the strict molecular

clock assumption as flagged by TreeTime were removed with the Ape package in R43 until a good time scaled phylogeny was ob-

tained. The mugration package extension of TreeTime was then used to map discrete country locations to tips and infer country lo-

cations for internal nodes under a GTRmodel. Finally, a custom python script (available in our GitHub repository: https://github.com/

CERI-KRISP/SARS_CoV_2_VOC_dissemination) was used to count the number of state changes over the span of the tree. State

transitions that occurred prior to the earliest known tMRCA for each VOC and sub-variant were discarded to minimize the counting

of transitions belonging to deep nodes with low confidence

Source sink dynamics and viral movement patterns quantification
From the above ancestral state reconstruction data, phylogeographic maps and source sink dynamics were calculated and plotted

using custom R scripts (available in our GitHub repository), as follows. Each recorded location state change is time stamped in dec-

imal dates and annotated with origin and destination countries. Each of those state changes are further annotated with their corre-

sponding continental and sub-continental groupings. Volumes of viral exports and introductions are calculated by aggregating the

replicates for each dataset and the mean is considered either per country, continent, sub-continental region and specific to each

VOC. Each state change is also annotated to be either a global (between two locations on different continents) or regional viral ex-

change (between two locations on different continents). Source and sink dynamics are estimated by calculating the net difference

between the numbers of exports and introductions for a specific location; a location is determined to be a net source if the number

of exports of a variant exceeds the number of introductions. The phylogeographic maps are constructed by linking sub-continental

regions with curved lines going anti-clockwise in the direction of the curve. Each curved line is coloured by the mean date of state

changes occurring along that specific link.

The speed of VOC arrival in different countries is calculated as the delay (number of days) between the estimated dates of emer-

gence of each VOC from published literature (Table S2) and either the first sampling dates of genomes per VOC and per country as

reported on GISAID (Date of access: 18 September 2022) or the first inferred introduction from our ancestral state reconstruction

data. GISAID sampling dates are obtained from the curated global metadata file available under the ‘Genomic Epidemiology’ collec-

tion, which is assumed to have undergone minimum sequence quality checks and lineage classification. In addition, we exclude se-

quences likely to have incorrect sampling dates (where these are either prior to the respective VOC date of emergence specified in

Table S2 or where these are over a year prior to the sequences’ GISAID submission dates). Pearson correlations are calculated be-

tween this delay and mobility into different countries by considering either the total volume of passengers into each country, the vol-

ume of passengers from either the UK (for Alpha), South Africa (for Beta and Omicron), Brazil (for Gamma), and India (for Delta) into

each country, or an effective distance metric (Deff), for which the calculation is explained below. Since, the phylogenetic methods for

estimating the first inferred introduction relies on case-sensitive genomic sampling, therefore on the size of the epidemic, this means

that our method will not pick up an early introduction of a variant if this did not rapidly lead to an increase in the number of cases,

which we explain in our limitations section. The way to interpret this is that our method is able to estimate the earliest inferred intro-

ductions that are relevant to seeding local epidemics. The discrepancy between the dates of first sequenced sample and first inferred

introduction is useful to query and interpret (Figure S8). If the first inferred introduction happens after the first sequenced sample, it

means that there had already been introductions of the variant much before the introductions that successfully seeded epidemic

growth in respective countries. For instance, this is predominantly the case for Delta, where it is known that the variant was spreading

before observable epidemic growth (due to still ongoing waves of Alpha, Beta andGamma locally). If, on the contrary, the first inferred

introduction is estimated to be before the first sequenced sample, then it means that the respective country had not yet detected the

variant by the time epidemic growth had already been seeded. This is shown to be the case for several of the countries that received

the earliest introductions of Alpha, Beta, Gamma and the Omicron sub variants, demonstrating a lag between detection by genomic

sequencing and epidemic expansion of variants.

All data visualization was generated through the ggplot package in R.44

Air Travel Data
We evaluated travel data generated from the International Air Transport Association (IATA) to quantify passenger volumes originating

from international airports during the specified time periods (reported below). IATA data accounts for �90% of passenger travel itin-

eraries on commercial flights, excluding transportation via unscheduled charter flights (the remainder is modeled using market intel-

ligence). Correlations with air travel passenger volumes were calculated using the Spearman rank correlation method, and reporting

levels of significance.

Relevant travel periods:

Alpha: September 2020 - March 2021, Origin: UK

Beta: September 2020 - March 2021, Origin: South Africa

Gamma: November 2020 - May 2021, Origin: Brazil

Delta: September 2020 - September 2021, Origin: India

Omicron BA.1: November 2021 - March 2022, Origin: South Africa

Omicron BA.2: November 2021 - March 2022, Origin: South Africa

Omicon BA.4/BA.5: November 2021 - March 2022, Origin: South Africa
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Global travel dataset: February 2020 - March 2022

Complete air travel network: October 2020 & October 2021

Air travel network and sensitivity analysis
We used data from October 2020 and October 2021 when global data on air travel between countries was available. We selected

these two months as they represent low travel and ‘recovered’ passenger travel volumes.

We used global air traffic data from October 2020 and 2021; these two months were selected as they represent broadly the two

distinct phases of global mobility patterns: before and after the "recovery" from the substantially reduced intensity of air travel as a

result of the pandemic starting in 2019. The data consists of the number of air passengers traveling between 231 countries in the

corresponding month.

Calculation of Deff
Following the formulation as detailed in Brockmann and Helbing,22 from the air passenger matrix F (where Fmn represents the num-

ber of air passengers traveling from country m to n during the corresponding month) we first computed the effective length matrix d,

where the element dnm is given by

dmn = 1 � log Pmn
where Pmnis the fraction of air passengers leaving country n that ar
e arriving at countrym, and therefore can also be written asPmn =

Fmn=Fn, where Fn =
P

i

Fin is the total number of air passengers leaving country n.

Having computed the effective length matrix d, we then proceeded to identify the shortest path between the presumed origin loca-

tion and any other connected node in the network using Dijkstra’s algorithm implemented in a Python package. The shortest path

between two countries n and m corresponds to the path that traverses a finite set of legs in the network t = fl1; l2; :::; lLg such that

the sum of effective lengths along this set of legs is the smallest among all possible paths from n to m. We define this to be the effec-

tive distanceDmnfrom n tom. Note that there is an asymmetry between dmn and dnm, andmore importantlyDmnsDnm in general. For a

given presumed original location/node, the tree constructed from the set of shortest paths to all other nodes is known as a shortest

path tree.

Comparisons between Deff and travel volumes
For a given origin location (OL), here we compare the number of air passengers traveling from OL to a country n, Fno = FðOL/nÞ,
versus the corresponding effective distance Dno = Deff ðOL /nÞ. Plotting log Fno against Dno (Figure S6A), we find that all countries

either lie on or below a straight diagonal line with a negative gradient. This is unsurprising given the formulation of the effective length

where dmn = 1 � log Pmn, which can be rearranged to give log Pmn = 1 � dmn for any pair of nodes m and n. By the definition of the

effective distance Dmn which is the sum of the effective lengths along the shortest path from n to m, then Dmn %dmn and therefore

logPmn R 1 � Dmn. Equality is only satisfied when the shortest path from n to m is the direct path between n and m without any in-

termediate node. With this in mind, the plots of log Fno against Dno therefore show that a large proportion of countries (with observed

direct traffic flow from the presumed OL) are connected to OL by their direct path and therefore lie on a straight diagonal line. How-

ever, it is important to note that a substantial of countries did not observe direct traffic flow from the presumed OL and are thus not

shown in the plots (17% to 40%) - these countries represent peripheral nodes that are not directly connected to OL in the traffic

network and are therefore countries that would otherwise have been ignored in an analysis using observed direct traffic flow rather

than effective distances.

Comparison between Deff calculated using data from 2020 and 2021
Comparison between the effective distances calculated using air traffic data from 2020 and 2021 shows that the global mobility pat-

terns were broadly similar across the two years. Spearman’s rank correlation coefficients range from 0.86 (with India as the presumed

origin location) to 0.93 (with the United Kingdom as the presumed origin location). Visual comparison of the shortest path trees con-

structed from the shortest paths also reveal mostly similar topological structures across the two years (Figure S5), where most of the

nodes retain similar relative positions in the tree and therefore level of importance in the context of global air traffic as a driver of the

global dissemination of VOCs.

Sensitivity analysis of United Arab Emirates (ARE) as a major travel hub
We observe from Figure 3B (left) that United Arab Emirates (ARE) potentially played an important role in the global dissemination of

the Delta variant, acting as amajor travel hub that connects India (IND; the presumed origin location) with many countries in Asia (e.g.

Jordan, Pakistan), Africa (e.g. Ethiopia, Egypt) and Europe (e.g. Bosnia-Herzegovina, Serbia). However, we also find that the first

sequence of the Delta variant was only detected in ARE in June 2021 - substantially later than other major travel hubs (e.g. GBR,

USA) occupying similar positions in the shortest path tree (Figures S6B and S6C), as well as countries that are descendants of

ARE (i.e. countries with shortest path from IND that traverses through ARE). This is perhaps not surprising given the very low

sequencing intensity in ARE, with only 17 September 2022) since the beginning of the pandemic. To lend further support to the
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hypothesis of ARE as an important (yet unobserved phylogenetically) transit node between IND and other countries in the global air

traffic network, we performed a sensitivity analysis by recalculating the effective distances and the shortest path tree with ARE

removed as an intermediate node. This is equivalent to restricting all outward air traffic from ARE, while allowing inward traffic

from other countries into ARE.

From the sensitivity analysis we find that, for the 52 countries that are descendants of ARE in the shortest path tree, there is an

average increase in the effective distance from IND by 15.3%, with a range of 1% to 85%. More importantly, we observe substantial

structural changes to the shortest path tree upon removal of ARE, where most of these descendant countries no longer form a single

cluster but become interspersed across the whole tree, with some smaller clusters forming around other major travel hubs such as

GBR andUSA. Future work should further investigate the likelihood of the observed position of ARE in the shortest path tree given the

observed delays in arrival of the Delta variant as well as other VOCs.

Regression of travel volume, travel restrictions, and case and death counts on viral exports
We employed a negative binomial regression to test the effect of total passenger travel volume, COVID-19 case and deaths counts,

and the international travel ban per country on the estimated meanmonthly exports of the SARS-CoV-2 virus. The estimated number

of viral exports from each country were calculated by aggregating replicates from the ancestral state reconstruction and the mean

monthly number of exports calculated per country per VOC. This was used as the response variable in the regression. The predictor

variables were as follows: total monthly passenger volume originating from each country of viral export, the total number of reported

cases or deaths per month per country (scaled to genomic prevalence of each variant calculated from genomic surveillance data on

GISAID), and international travel ban data gathered from the Oxford COVID-19 Government Response Tracker.47 International travel

bans were coded as a categorical variable: 0 - No measures; 1 – Screening; 2 - Quarantine arrivals from high-risk regions; 3 - Ban on

high-risk regions; 4 - Total border closure. The strictest travel ban experienced within each calendar month was used as the value for

that particular month. Negative binomial regressions were performed, with the MASS R package48 with a log link function and

maximum likelihood estimation of theta, per VOCwith data structured at country level and for the period of circulation of each respec-

tive VOC. Nagelkerke’s pseudo R2 was calculated for each model (DescTools R package45) to be cautiously used to assess the pro-

portion of variance for the response variable explained by the predictors.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analyses were performed using R version 4.1.3 and are described in the figure legends and in the method details.
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Supplemental figures

Figure S1. Viral sampling, introductions, and exportations for various VOCs over time, related to Figure 1

(A) Connectivity matrix representing the number of VOC-specific exports between continents with a monthly temporal resolution. The number of exports is

inferred from case-sensitive phylogeographic analysis (see STAR Methods for details).

(B) Graphs show the time-varying progression of the numbers of sampled genomes in our analysis compared with the numbers of inferred introductions and

exportations for Alpha, Beta, Gamma, Delta, Omicron BA.1, and Omicron BA.2 per continent.
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Figure S2. Alpha, Beta, and Gamma global distributions, related to Figure 1

Maps show countries colored by their share of total global Alpha (A), Beta (B), or Gamma (C) incidence.
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Figure S3. Correlations of incidence and travel to inferred VOC exportation numbers, related to Figures 1 and 2

(A) Graphs show scatter plots and regression lines denoting the numbers of variant-specific cases, volumes of air travel passengers, and inferred numbers of VOC

exportations for each country Spearman rank correlation values are shown, with the level of significance indicated.

(B) The net difference between viral exportation and importation events.

(C) The absolute numbers of exportation and importation events for each continent per VOC.

(D) Correlation of contribution of global viral exportation events and outgoing travel from countries. Graph shows a scatter plot and regression line denoting the

share of each country’s contribution to global numbers of inferred exportations for all VOCs and the total number of outgoing air travel passengers from 2020 to

2022. The Spearman rank correlation value is shown, with the level of significance indicated. The outliers are primarily southern African countries, with global

contributions to viral exports comparable to some small European and Asian countries but with visibly lower total outgoing passenger volumes. This can be

attributed to the Beta variant, which primarily circulated in southern Africa. The outlier southern African countries shown in this figure likely made significant

contributions to Beta exports globally despite their relatively lower connectivity.
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Figure S4. Global dissemination of the Alpha and Delta variants in effective distance space, related to Figure 4

(A) The sequence of panels shows the first sampling of the Alpha variant in different countries along the shortest path tree, with the United Kingdom (GBR) as the

presumed origin location (OL). Radial distance of each node from the central node represents the effective distance, Deff, from the presumed OL. Each node

represents a country and is colored according to whether a sequence of the Alpha variant has been sampled (red) or not (dark gray). Light gray nodes represent

countries with either no sampled sequences that are of the Alpha variant or countries that are not connected to the presumed OL in the air traffic network.

(B) The sequence of panels shows the first sampling of the Delta variant in different countries along the shortest path tree, with India (IND) as the presumed origin

location (OL). Radial distance of each node from the central node represents the effective distance, Deff, from the presumed OL. Each node represents a country

and is colored according to whether a sequence of the Delta variant has been sampled (red) or not (dark gray). Light gray nodes represent countries with either no

sampled sequences that are of the Delta variant or countries that are not connected to the presumed OL in the air traffic network.
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(legend on next page)
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Figure S5. Comparison of global air traffic networks observed in Oct-2020 and Oct-2021, related to Figure 4

Each row of panels corresponds to a presumed origin location associated with one of the VOCs. (Left) Effective distances calculated from global air traffic data

observed in Oct-2020 versus Oct-2021. Each black dot represents a country; the red dashed line represents the expected positions of these countries had the air

traffic network remained unchanged between 2020 and 2021. (Middle and right) Shortest path trees constructed from the global air traffic observed in Oct-2020

and Oct-2021, respectively. Each circle represents a country, colored according to its corresponding continent. Central red circle represents the presumed origin

location. Radial distance of each node from the central node represents the effective distance from the presumed origin location.
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Figure S6. Sensitivity analyses of effective distances, related to Figure 4

(A) Correlation between air passenger flow and effective distances. Log of number of air passengers traveling directly from the presumed origin location (OL) to

each country versus effective distance, Deff, calculated from the global air traffic network relevant to each VOC. Number of countries with no observed direct

passenger flow from the presumed OL is indicated in each panel.

(B and C) Sensitivity analysis of the United Arab Emirates as a secondary transit hub in the global dissemination of the Delta variant.

(B) Effective distance before versus after the United Arab Emirates (ARE) is removed as an intermediate node in the air traffic network. Orange circles represent

countries that are descendants of ARE in the shortest path tree, i.e., countries with shortest path that traverses from India through ARE. Black crosses represent

countries that are not descendants of ARE and therefore have an effective distance that is unaffected by the removal of ARE.

(C) Shortest path tree before (left) and after (right) the removal of ARE as an intermediate node. Highlighted nodes represent countries that are descendants of ARE

prior to the removal. Red node at the center represents India, the presumed origin location of the Delta variant.
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Figure S7. Methodology sensitivity analysis, related to STAR Methods

(A–C) Genomic counts and proportions, or presumed origin country vs. other countries for Alpha, Beta, and Gamma, when genomic subsampling is performed

either proportional to VOC-specific case counts or VOC-specific deaths. This comparison was performed to ascertain potential biases in testing rates in the

resulting sampling proportions. We found that the sampling proportions for each country remains consistent whichever strategy is used and opt to perform the

rest of the analysis with case sampling.

(D and E) Justification for the use of evolutionary rates. Graphs show the range of 90%maximum posterior region of inferred node dates (in number of days) and

the confidence of reconstructed node states as proxies for robustness of inference, either as an averagedmeasure for all nodes or by node number, from deepest

nodes for the adjusted evolutionary rate vs. the standard evolutionary rate. Results are shown for one phylogenetic reconstruction of Delta and Omicron BA.1

datasets.
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Figure S8. VOC introduction dates per country, shown either as the first sequenced date on GISAID or the date of first inferred introduction

from our phylogenetic analysis, related to discussion

The first sequenced dates are shown as a red circle, and the first inferred introductions are shown either in dark gray if they happen after the first sequenced date

or light gray if it happens before. If the first inferred introduction happens after the first sequenced sample, it means that there had already been introductions of

the variant much before the introductions that successfully seeded epidemic growth in respective countries. For instance, this is predominantly the case for Delta,

where it is known that the variant was spreading before observable epidemic growth (due to still ongoing waves of Alpha, Beta, and Gamma locally). If, on the

contrary, the first inferred introduction is estimated to be before the first sequenced sample, then it means that the respective country had not yet detected the

variant by the time epidemic growth had already been seeded. This is shown to be the case for several of the countries that received the earliest introductions of

Alpha, Beta, Gamma, and the Omicron subvariants, demonstrating a lag between detection by genomic sequencing and epidemic expansion of variants.
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