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Objectives: Optimizing antiretroviral drug combination on an individual basis can be challenging, particularly in
settings with limited access to drugs and genotypic resistance testing. Here we describe our latest computational
models to predict treatment responses, with or without a genotype, and compare their predictive accuracy with
that of genotyping.

Methods: Random forest models were trained to predict the probability of virological response to a new therapy
introduced following virological failure using up to 50 000 treatment change episodes (TCEs) without a genotype
and 18000 TCEs including genotypes. Independent data sets were used to evaluate the models. This study
tested the effects on model accuracy of relaxing the baseline data timing windows, the use of a new filter to ex-
clude probable non-adherent cases and the addition of maraviroc, tipranavir and elvitegravir to the system.

Results: The no-genotype models achieved area under the receiver operator characteristic curve (AUC) values of
0.82 and 0.81 using the standard and relaxed baseline data windows, respectively. The genotype models achieved
AUC values of 0.86 with the new non-adherence filter and 0.84 without. Both sets of models were significantly
more accurate than genotyping with rules-based interpretation, which achieved AUC values of only 0.55-0.63, and
were marginally more accurate than previous models. The models were able to identify alternative regimens that
were predicted to be effective for the vast majority of cases in which the new regimen prescribed in the clinic failed.

Conclusions: These latest global models predict treatment responses accurately even without a genotype and

have the potential to help optimize therapy, particularly in resource-limited settings.

Introduction

The development of approximately 30 HIV drugs acting at six dif-
ferent points in the virus life cycle and the expansion of access to
therapy around the world is a great success story.! The current
United Nations Programme on HIV/AIDs (UNAIDS) target for 2020
is for 90% of infected people to be diagnosed and 90% of them to
be on therapy with 90% of those treated having suppressed virus
(‘90-90-90°). The last target is critical in order not only to prevent
disease progression, morbidity and mortality but to decrease the
spread of the virus.>® A major threat to this is the development of

HIV drug resistance, often linked to poor adherence and interrup-
tions to drug supplies in some settings.

A recent report from the WHO and others showed that the
prevalence of HIV drug resistance among patients in public health
ART programmes has increased from 11% to 29% since the global
expansion of ART to low- and middle-income countries (LMICs)
beganin 2001.*

When treatment fails, the combination of antiretroviral agents
should be changed in order to resuppress the virus. In most
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well-resourced countries the selection of a new combination is
individualized by expert physicians using information including the
patient’s treatment history and the results of a genotypic resist-
ance test.“”® However, resistance testing is relatively expensive
and only moderately predictive of response to treatment.”

The challenge of individually optimized drug selection in LMICs
is even greater as resistance tests are typically unavailable or un-
affordable and drug options are limited.® In the absence of routine
viral load monitoring, therapy failure is often detected late and
regimen switch decisions are based on standard protocols rather
than individualized. The result can be suboptimal regimen selec-
tion, failure to achieve viral resuppression and further resistance
selection, which may limit future therapeutic options and can be
transmitted to others.’

The HIV Resistance Response Database Initiative (RDI) has col-
lected biological, clinical and treatment outcome data for more
than 200000 HIV-1 patients around the world over a period of
16 years. From these data, we have used machine learning to de-
velop models to predict HIV-1 treatment outcomes and to identify
optimal, individualized therapies.'®*> We have developed models
that use information from genotypic resistance tests in their pre-
dictions and others that do not. The most recent models, devel-
oped using large data sets from around the world then tested with
independent test sets predicted virological response with an over-
all accuracy (OA) of around 80% with a genotype and 74%
without. >

The models are used to power an online treatment decision
support tool, the HIV Treatment Response Prediction System (HIV-
TRePS). To keep this system as current as possible in terms of the
inclusion of new drugs and reflection of current clinical practice itis
essential that new models are regularly developed using the latest
data.

Here we report the development of two new sets of random
forest (RF) models that estimate the probability of combinations of
antiretroviral drugs reducing the plasma viral load to undetectable
(<50 copies HIV RNA/mL):

1. Models that do not require a genotype for their predictions
(no-genotype or NG models), trained using a large global data
set and intended for use in LMICs without access to genotyp-
ing. We compared standard models (NG1) with experimental
models developed using new highly permissive data inclusion
criteria (NG2) to increase utility in LMICs where clinic visits can
be infrequent.

2. Global models that use a viral genotype in their predictions
(global genotype or G models). These were developed using
data screened for likely non-adherence using an experimental
filter. Cases of discordance between virological failure
observed in the clinic and predictions of response by both our
current models and genotyping with rules-based interpret-
ation were excluded (G2) and the resultant models compared
with ‘standard’ models (G1).

3. For the first time there were sufficient data without genotypes
for the NG models to be trained to predict outcomes for three
drugs not previously covered: tipranavir, maraviroc and
elvitegravir.

The accuracy of all the models was ascertained and they were
evaluated as potential tools to support optimized, individualized

treatment decision-making in the RDI’s HIV-TRePS system. This
paper represents the latest update alluded to in our previous publi-
cations of modelling.'***

Methods

Clinical data

Treatment change episodes (TCEs) were collected from cases in which ART
was changed following virological failure.'® TCEs for development of the NG
models had all the following data available: on-treatment baseline plasma
viral load (obtained <8 weeks prior to treatment change for the standard
models, NG1, and <12 weeks for the experimental models, NG2); on-treat-
ment baseline CD4 cell count (<12 weeks prior to treatment change for
NG1 and <16weeks for NG2); the drugs in use prior to the change;
ART history; drugs in the new regimen; follow-up plasma viral load obtained
4-52 weeks following introduction of the new regimen and time to that
follow-up. A similar extraction was subsequently performed for TCEs that
also had an on-treatment genotype (protease and reverse transcriptase se-
quence <12 weeks prior to treatment change) for the development of the
genotype models.

The TCEs were censored using rules established in previous studies and
published in detail elsewhere.*®

Data partition for models without genotypes (NG)

The qualifying TCEs were partitioned using methods described else-
where.'»1® The partition scheme is illustrated in Figure 1. For the NG2 mod-
els, with the expanded baseline data windows, a training set of 50 270 TCEs
and anindependent test set of 3000 TCEs, one each from 3000 patients not
represented in the training set, were obtained. For the NG1 models, the
standard baseline data windows were applied to the NG2 training and test
setsresulting in training and test sets reduced to 43 239 and 2500 TCEs.

Data partition for models with genotypes (G)

The data that included baseline genotypes were partitioned into a master
pool of 18242 training TCEs and 1000 test TCEs. The data were screened
for possible non-adherence using our standard filter (which excludes cases
with a baseline viral load of <3.01og;0 HIV RNA and an increase in viral load
of >2.0 following the introduction of a new regimen selected with a recent
genotype available). This resulted in a training set of 18 188 and a test set
of 997. The master pool of TCEs was then screened using a trial filter for
possible non-adherence. Cases in which the new regimen used in the clinic
failed to achieve virological response were passed through HIV-TRePS.
Those predicted to respond (follow-up viral load <50 copies) were extracted
and genotypic sensitivity scores (GSSs) were obtained using the Stanford
HIVDB, REGA and ANRS interpretation systems. Cases with a GSS of >2 (two
or more active drugs) in all three systems were then excluded. This removed
~5% of the TCEs, resulting in a training set of 17 378 and test set of 940.

Computational model development

The two NG training sets of TCEs were used to train two committees of five
RF models, to estimate the probability of the follow-up viral load being less
than 50 copies/mL, using methodology described elsewhere.'!* The fol-
lowing 47 input variables were used (new variables underlined): baseline
viral load (log,o copies HIV RNA/mL); baseline CD4 count (cells/mm?); treat-
ment history—22 binary variables coding for experience of zidovudine, di-
danosine, stavudine, abacavir, lamivudine, emtricitabine, tenofovir
disoproxil fumarate, efavirenz, nevirapine, etravirine, indinavir, nelfinavir,
saquinavir, amprenavir, fosamprenavir, lopinavir, atazanavir, darunavir,
enfuvirtide, raltegravir, tipranavir and maraviroc; antiretroviral drugs in the
new regimen—23 variables as above with the addition of elvitegravir; and
time to follow-up (days). The output variable was the follow-up viral load as
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Figure 1. Partition scheme. EVG, elvitegravir, MVC, maraviroc; TPV, tipranavir.

a binary variable: <1.7log or 50 copies/mL =1 (response) and >1.7 log or
50 copies/mL = 0 (failure).

The genotype models used 105 input variables including the above but
without raltegravir as a historical drug and without maraviroc or tipranavir in
the new regimen because of insufficient data with genotypes. History of mar-
aviroc use was a new variable. In addition, the following 62 mutations,
detected in the baseline genotype were used: HIV reverse transcriptase
mutations (n = 33): M&1L, E44D, A62V, K65R, D67N, 69 insert, TEOD/N, K70R,
L74V, V751, F77L, V90I, A98G, L100I, L101I/E/P, K103N, V106A/M, V106I,
V108I, Y115F, F116Y, V118I, 138A/G/K, Q151M, V179D/F/T, Y181U/IN,
M184V/1, Y188C/L/H, G190S/A, L210W, T215F/Y, K219Q/E and P236L; and
protease mutations (n=29): L10F/I/R/V, V111, K20M/R, L24I, D30N, V32I,
L33F, M361, M36L/V, M46L/L, 147V, G48V, 150V, I50L, F53L, 154 (any change),
58E, L63P, A71(any change), G73(any change), T74P, L76V, V771, V82A/FIS,
V82T, 184V/AIC, N88D/S, L89V and L9OM. The mutations were selected on
the basis of the IAS-USA mutation list as well as previous modelling studies.'”

Validation and independent testing

Each of the four committees of five RF models was developed using a
5x cross-validation scheme.'*® For each partition the model’s estimates
of the probability of response for the validation cases was compared with
the actual response observed in the clinic and the best-performing model
selected for the final committee. For each of the five final models, the opti-
mum operating point (OOP) was identified (the cut-off for the probability of
response being classed as response versus failure that gave the best per-
formance overall).

The performance of the models as predictors of response was then
evaluated using the independent test cases. The models’ estimates of the

probability of response and the responses observed in the clinics for these
cases were used to plot receiver operator characteristic (ROC) curves and
assess the area under the ROC curve (AUC). In addition, the average OOP,
derived during cross-validation, was used to obtain the OA (the percentage
of outcomes that were correctly predicted), the sensitivity and the specifi-
city of the models.

Comparison of the accuracy of the models versus
rules-based interpretation of the genotype

GSSs were obtained for test cases with genotypes that could be fully inter-
preted by three rules-based genotype interpretation systems in common
use: ANRS, REGA and Stanford HIVDB. The three systems were accessed on-
line on 7 September 2017 and the GSSs calculated by adding the score for
each drug in the regimen, with full sensitivity scored as 1, partial as 0.5 and
no response as 0. These scores were then used as predictors of response
and the performance compared with that of the models.'®

In silico analysis to evaluate the potential of the models
to help avoid treatment failure

In order to evaluate further the potential clinical utility of the models, we
assessed their ability to identify alternative, practical regimens that were
predicted to be effective (probability of virological response above the OOP),
or more likely to be effective than the regimens introduced in the clinic.
Lists of regimens in regular clinical use were identified from the RDI data-
base. The baseline data for all test TCEs in which the new regimen com-
prised three or more drugs were entered into the models and predictions
obtained for the regimens on the drug lists that had no more drugs than
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the regimen used in the clinic. Since the NG models are used primarily in
LMICs, we wanted to avoid modelling regimens that are unavailable in such
settings, as this could overestimate the system’s utility. The analysis was
therefore repeated using test cases from sub-Saharan countries only and
modelling alternative regimens comprising only those drugs that were in
use in those countries at the time of data collection.

Results

Characteristics of the data sets

The baseline, treatment and response characteristics of the data
sets are summarized in Tables 1 and 2. The training sets for NG
models comprised 43 239 TCEs using the standard baseline data
windows and 50 270 using the expanded baseline data windows.
The data sets have very comparable baseline data with a median
plasma viral load of ~3.8log;ocopies/mL and CD4 count of
~260 cells/mm?. The median number of previous drugs used in
the patients’ treatment was 4-5, with almost all exposed to nu-
cleoside or nucleotide reverse transcriptase inhibitors [N(t)RTIs],
around two-thirds having been exposed to NNRTIs and two-thirds
to protease inhibitors (PIs). There was a broad range of new regi-
mens represented in the data, the most common being two NRTIs
and one PI (32%-36%), followed by two NRTIs and an NNRTI
(18%-23%).

The characteristics of the TCEs with genotypes are summarized
in Table 2. The training sets comprised 18188 TCEs using the
standard non-adherence filter and 17378 using the new filter.
The sets have very comparable baseline data with a median
plasma viral load of ~4.3 log;o copies/mL (about half a log higher
than the NG data) and median CD4 count of ~230 cells/mm?,
slightly lower than the NG data. The treatment history was similar
to that of the NG data, as was the range of new regimens other
than somewhat fewer patients changing to NNRTI-based regi-
mens (~10% versus 20%).

Results of the modelling without a genotype

The performance characteristics from the ROC curves of the mod-
els during cross-validation and independent testing are summar-
ized in Table 3. The NG1 models achieved AUC values during
cross-validation of 0.83 to 0.84, with a mean of 0.84. The OA was
77% to 78% (mean=77%), the sensitivity was 71% for all
five models and the specificity ranged from 80% to 81%
(mean = 80%). The OOP was 0.42-0.43.

The NG2 models achieved very similar results with AUC values
during cross-validation of 0.83 to 0.84 and a mean of 0.83. OA
ranged from 76% to 77% (mean = 76%), sensitivity again was
71% and specificity ranged from 79% to 80% (mean = 80%).

Independent testing

The NG1 models achieved an AUC of 0.82 in independent testing
(Figure 2). OA was 75%, sensitivity 72% and specificity 77%. The
NG2 models achieved an AUC value of 0.81, OA of 75%, sensitivity
was 73% and specificity 76%. The performance of the two sets of
models during independent testing was not significantly different
(P=10.84).

When NG2 models were tested using only the 500 test cases
with baseline data that fell outside of the standard windows, the

AUC was 0.79, OA 73%, sensitivity and specificity each 73%. There
were no significant differences between the performance of NG2
models with those cases with baseline data inside versus outside
the standard windows (P = 0.29).

When the two sets of models were tested only with those cases
involving each of the three new drugs (50 cases in each subset) the
AUC values ranged from 0.75 to0 0.89.

Comparing the predictive accuracy of the models
versus genotyping

Of the 3000 TCEs in the global NG test set, 634 had genotypes
available that were suitable for full interpretation by the three in-
terpretation systems. The ROC curves are presented in Figure 2,
alongside those for the models. The AUC values for the GSS were
0.56 (ANRS), 0.58 (Stanford HIVDB) and 0.55 (REGA) (Table 4). All
were significantly less accurate predictors of virological response
than the NG models, both sets of which achieved an AUC of 0.81
for these cases (P < 0.0001).

Results of the modelling with a genotype

The performance characteristics from the ROC curves of these
models during cross-validation and independent testing are sum-
marized in Table 5. The five G1 models achieved AUC values during
cross-validation ranging from 0.84 to 0.86, with a mean of 0.86.
OA was 78% to 79% (mean = 79%), sensitivity 71% to 73%
(mean =73%) and specificity 78% to 82% (mean =381%). The
OOPwas 0.42.

The five G2 models (using data with the new non-adherence fil-
ter) achieved AUC values during cross-validation ranging from 0.86
to 0.89, with a mean of 0.88. OA was 79% to 82% (mean = 80%),
sensitivity 77% to 81% (mean = 79%) and specificity 79% to 82%
(mean = 81%). The OOP was again 0.42.

Independent testing

When tested with the independent G1 test cases using the OOP
developed in cross-validation, the G1 models achieved an AUC of
0.84 (Figure 3). The OA was 76%, sensitivity 72% and specificity
80%. G2 models achieved an AUC value during testing with the G2
test set of 0.86, OA of 79%, sensitivity of 74% and specificity of
83%. Again, the G2 models’ performance was slightly better than
G1 but there was no statistically significant difference between the
two sets of models (P=0.25).

When G1 models were tested using the G2 test set, perform-
ance improved slightly (AUC from 0.84 to 0.85 and OA from 76% to
77%) but was not as good as with the G2 models. Conversely, the
performance of the G2 models worsened when tested with the G1
test set (AUC reduced from 0.86 to 0.83 and OA from 79% to 76%),
but remained comparable with the performance of the G1 models.

Comparing the predictive accuracy of the G2 genotype
models versus genotyping

GSSs were generated for 856 test TCEs in which the drugs in the
new regimens were fully covered by the interpretation systems.
The genotype systems achieved AUC values of 0.60-0.63, com-
pared with 0.86 using the G2 models and 0.84 for G1 (Figure 3).
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Table 1. Demographic characteristics of the TCEs without genotypes (NG)

NG1 training set NG1 test set NG2 training set NG?2 test set
TCEs, n 43239 2500 50270 3000
Patients, n 13970 2500 15850 3000
Age (years), median 42 41 42 41
Gender, n

male 29290 1647 33751 1947

female 8347 544 10157 704

not known 5602 309 6362 349

Geographical sources of TCEs, n

Argentina 112 11 177 27

Australia 481 33 505 34

Brazil 3 1 5 1

Canada 3554 197 4214 238

Germany 4679 244 5077 266

India 330 37 469 57

Italy 1418 86 1632 97

Japan 116 6 133 8

Mexico 308 28 415 34

Netherlands 6173 368 7298 464

Romania 434 51 603 68

Serbia 0 0 1 0

South Africa 3032 303 4190 451

Spain 4727 226 5856 258

UK 9530 451 10735 507

USA 1876 77 2116 95

sub-Saharan Africa (country unknown) 52 9 66 10

unknown (from multinational cohorts/trials) 6414 372 6758 385

Baseline data, median (IQR)
baseline VL (logo copies/mL) 3.86 (2.75-4.73) 3.81 (2.65-4.69) 3.83 (2.75-4.7) 3.78 (2.66-4.66)
baseline CD4 (cells/mm?) 260 (134-417) 256 (130-405) 261 (139-420) 260 (135-417)
Treatment history

number of previous drugs, median (IQR) 5(3-8) 4 (3-6) 5(3-7) 4 (3-6)

N(t)RTI experience, n (%) 43119 (99.7) 2496 (99.8) 50142 (99.7) 2995 (99.8)

NNRTI experience, n (%) 28 653 (66.3) 1675 (67.0) 33398 (66.4) 2026 (67.5)

PI experience, n (%) 30030 (69.5) 1551 (62.0) 34 461 (68.6) 1776 (59.2)

number of previous regimens, median (IQR) 4 (3-9) 4 (2-7) 4 (3-9) 3(2-7)

New regimens, n (%)

2 N(t)RTIs + 1 PI 13915 (32.2) 861 (34.4) 16 649 (33.1) 1065 (35.5)
N(t)RTIs + 1 NNRTI 7960 (18.4) 550 (22) 9446 (18.8) 690 (23)
N(t)RTIs + 1 PI 2963 (6.9) 167 (6.7) 3354 (6.7) 189 (6.3)
N(t)RTIs 1921 (4.4) 94 (3.8) 2179 (4.3) 111 (3.7)
N(t)RTIs + 1 NNRTI 1493 (3.5) 56 (2.2) 1661 (3.3) 66 (2.2)
N(t)RTIs 1211 (2.8) 63 (2.5) 1542 (3.1) 79 (2.6)
N(t)RTIs + 1 NNRTI + 1 PI 1305 (3) 63 (2.5) 1510 (3) 74 (2.5)
N(t)RTIs 750 (1.7) 37(1.5) 860 (1.7) 43 (1.4)
(t)RTI + 1 NNRTI + 1 PI 883 (2) 43 (1.7) 1019 (2) 49 (1.6)

N(t)RTI + 1 PI 725(1.7) 42 (1.7) 860 (1.7) 49 (1.6)

other 10113 (23.4) 524 (21) 11190 (22.3) 585 (19.5)

VL, viral load; N(t)RTI, nucleoside or nucleotide reverse transcriptase inhibitor.

The OA values were 57%-59% for genotyping compared with 80%  In silico analysis

for the G2 models and 77% for G1. All three genotype interpret- The NG models were able to identify alternative regimens that
ation systems were significantly worse at predicting responses  were predicted to be effective for 97% (NG1) to 98% (NG2) of cases
than both sets of models (P < 0.00001). (Table 6). They were able to identify alternative regimens
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Table 2. Demographic characteristics of the TCEs including a genotype (G)

G1 training set G1 test set G2 training set G2 test set
TCEs, n 18188 997 17378 940
Patients, n 6844 997 6700 940
Gender, n

male 11364 601 10887 565

female 2700 150 2544 141

unknown 4124 246 3947 234

Geographical sources of TCEs, n

Australia 327 24 307 22

Canada 1773 104 1616 99

Germany 1729 84 1617 74

India 82 6 70 5

International 1015 51 1009 51

Italy 869 69 852 66

Japan 115 7 113 7

Netherlands 1365 74 1297 68

Romania 34 1 34 1

South Africa 176 14 142 12

Spain 2095 116 2017 105

sub-Saharan Africa 44 5 40 4

UK 2767 118 2653 114

USA 544 41 521 37

unknown 5253 283 5090 275

total 18188 997 17378 940

Baseline data, median (IQR)
baseline VL (logy copies/mL) 4.23 (3.47-4.89) 4.3 (3.51-4.9) 4.27 (3.5-4.9) 4.3 (3.58-4.9)
baseline CD4 (cells/mm?) 229 (112-380) 240 (113-382) 226 (110-377) 234 (112-380)
Treatment history

number of previous drugs, 5(3-8) 5(3-7) 5(3-8) 5(3-7)

median (IQR)

N(t)RTI experience, n (%) 18124 (99.7) 990 (99.3) 17317 (99.6) 933 (99.3)

NNRTI experience, n (%) 12019 (66.1) 641 (64.3) 11483 (66) 602 (64)

PI experience, n (%) 13015 (71.6) 717 (71.9) 12536 (72.1) 684 (72.8)

number of previous regimens, median (IQR) 3(2-7) 3(2-6) 3(2-7) 3(2-6)

New regimens, n (%)

2 N(t)RTIs + 1 PI 5887 (32.4) 310(31.09) 5463 (31.4) 278 (29.6)
N(t)RTIs + 1 NNRTI 1686 (9.3) 100 (10.03) 1597 (9.2) 97 (10.3)
N(t)RTIs + 1 PI 1855 (10.2) 105 (10.53) 1745 (10.0) 99 (10.5)
N(t)RTIs 792 (4.4) 32 (3.21) 781 (4.5) 32 (3.4)
N(t)RTIs + 1 NNRTI 651 (3.6) 41 (4.11) 634 (3.6) 40 (4.3)
N(t)RTIs 490 (2.7) 29 (2.91) 488 (2.8) 28 (3.0)
N(t)RTIs + 1 NNRTI + 1 PI 763 (4.2) 50 (5.02) 735 (4.2) 47 (5.0)

1 PI+ 1 integrase inhibitor 0(0) 0(0) 0(0) 0(0)

4 N(t)RTIs 424 (2.3) 17 (1.71) 413 (2.4) 17 (1.8)

T N(t)RTI+ 1 NNRTI + 1 PI 409 (2.2) 38 (3.81) 392 (2.3) 37 (3.9)

TN(t)RTI+1PI 345(1.9) 14 (1.40) 344 (2.0) 12 (1.3)

other 4886 (26.9) 261 (26.18) 4786 (27.5) 253 (26.9)

VL, viral load; N(t)RTI, nucleoside or nucleotide reverse transcriptase inhibitor.

comprising only those drugs in common use with a higher prob-
ability of response (but not necessarily above the response classifi-
cation threshold of the models) for all cases. For the cases in which
the new regimen failed in the clinic, the models were able to

identify alternatives that were predicted to be effective in 96% and

with a higher probability of response in 100%.

Using only locally available drugs (lamivudine, abacavir, zidovu-
dine, didanosine, efavirenz, emtricitabine, lopinavir, nevirapine,
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Table 3. Results of the modelling without a genotype (NG)

NG1 models (standard data windows)

NG2 models (expanded data windows)

AUC sensitivity (%) specificity (%) OA (%) OOP  AUC  sensitivity (%) specificity (%) OA (%) OOP
Cross-validation during model development
model
1 0.84 71 81 78 0.43  0.84 71 80 77  0.42
2 0.84 71 80 77 042  0.83 71 79 76 0.42
3 0.83 71 80 77 042  0.83 71 79 76 041
4 0.83 71 80 77 042 0.83 71 79 76 0.42
5 0.83 71 80 77 043 0.83 71 79 76 0.43
mean 0.84 71 80 77 042 083 71 80 76 0.42
min 0.83 71 80 77 042  0.83 71 79 76 041
max 0.84 71 81 78 0.43  0.84 71 80 77 0.43
Independent testing
main test set (NG1, n = 2500; NG2, n =3000) 0.82 72 77 75 042 081 73 76 75  0.42
marginal cases® (n = 500) 0.79 73 73 73 042
new drug subsets
EVG (n=50) 0.81 80 79 80 0.61 0.75 74 79 76 0.63
MVC (n =50) 0.89 88 89 88 0.52 0.83 74 74 74 0.52
TPV (n=50) 0.84 71 73 73 035 085 70 82 80 043

EVG, elvitegravir; MVC, maraviroc; TPV, tipranavir.
“Cases with baseline data outside the standard windows used for M1.
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Figure 2. ROC curves for the NG models versus genotyping (GSS).

raltegravir and tenofovir disoproxil fumarate) for 450 cases from
sub-Saharan Africa, the NG models were able to identify alternative
regimens that were predicted to be effective for 95% of cases and
92%-93% for cases in which the new regimen failed in the clinic.
The genotype models identified alternative regimens that were
predicted to give a response for 93% of the test cases and regi-
mens with a higher probability of response for 99.9% (Table 6). For
patients who experienced virological failure in the clinic, the

Table 4. Comparison of model predictions versus GSS for test TCEs with
genotypes

Prediction Sensitivity  Specificity OA P (GSS versus
system AUC (%) (%) (%) either models)
NG1 models 0.82 71 77 75

NG2 models 0.81 68 78 74

Total ANRS score  0.56 53 55 54 <0.0001
Total HIVDB score  0.58 40 68 56 <0.0001
Total REGA score  0.55 53 53 53 <0.0001
G1 models 0.84 73 80 77

G2 models 0.86 76 82 80

Total ANRS score  0.61 53 61 58 <0.0001
Total HIVDB score  0.63 54 63 59 <0.0001
Total REGA score  0.60 57 57 57 <0.0001

models identified alternatives that were predicted to give a re-
sponse for 90% and with a higher probability of response than the
regimen in the clinic for all 100%.

Discussion

These latest computational models, developed using our largest
databases, are the most accurate predictors of response to com-
bination ART to date. They include, for the first time, tipranavir,
maraviroc and elvitegravir.

Both sets of models achieved AUC values over 0.80 in cross-
validation and independent testing. The results replicated and

2192

610z Aieniga4 0 uo Jasn aumipay [eaidol] g susIBAH 10 |[ooyos uopuoT Aq 009920S5/98 1 Z/8/E LNornsge-aoiie/oel/woo dno-olwspese//:sdny WwoJj papeojumoq



HIV-TRePS 2018: new models to predict response to therapy

JAC

Table 5. Results of modelling with a genotype (G)

G1 models (standard non-adherence filter)

G2 models (experimental filter)

AUC  sensitivity (%)  specificity (%)  OA (%)  OOP AUC sensitivity (%)  specificity (%)  OA (%)  OOP
Cross-validation during model development
model
1 0.86 71 78 78 0.41 0.86 78 79 79 0.43
2 0.86 73 82 79 0.43 0.89 81 82 82 0.42
3 0.86 73 82 79 0.43 0.89 81 81 81 0.42
4 0.84 73 80 78 0.42 0.87 77 80 79 0.41
5 0.86 73 82 79 0.43 0.88 79 81 80 0.41
mean 0.86 73 81 79 0.42 0.88 79 81 80 0.42
min 0.84 71 78 78 0.41 0.86 77 79 79 0.41
max 0.86 73 82 79 0.43 0.89 81 82 82 0.43
Independent testing
test set
G1(n=997) 0.84 72 80 76 0.42 0.83 75 76 76 0.42
G2 (n=940) 0.85 72 82 77 0.42 0.86 74 83 79 0.42
1 e research looking at models that can accept missing values is
- warranted.
The use of a new more stringent filter for presumed non-
0.8 - adherence removed a greater proportion of available TCEs than
the standard filter and led to a small numerical increase in per-
formance for the genotype models.

06 The NG models presented here can predict outcomes to 23 dif-
g‘ ferent drugs, including some relatively recently approved inhibitors
3§ ANRS that are not routinely available in LMICs. Users of the HIV-TRePS
3 04 ] HIVDB system are able .to exclude any drugs that are not locally ovcnlqble
— — REGA from the modelling. The in silico results for cases from LMICs, using
—_— a highly restricted list of locally available drugs, demonstrated the
G1 potential of the models to improve virological response rates

0.2 nevertheless, underlining their applicability for LMICs.
Akey input variable for these models was the plasma viral load,
7 which studies have shown to be important for the accuracy of the
0 ‘ ‘ ; ; ‘ models.'® Although viral load monitoring is not routine in LMICs, it

0 0.2 0.4 0.6 0.8 1.0

1-Specificity
Figure 3. ROC curves for the G models versus genotyping (GSS).

reinforced previous findings that our models are substantially
more accurate predictors of virological response to combination
therapy than viral genotyping with rules-based interpretation.'***
[tis encouraging that this superiority was maintained despite elim-
inating a number of cases in which the GSS and the response
observed in the clinic were discordant, in an attempt to exclude
non-adherent patients.

The expanded ‘windows’ for baseline data make these models
more practical for use in LMICs where visits for laboratory monitor-
ing are relatively infrequent. Moreover, the broad range of settings
represented in the study data suggests that these findings and
the potential utility of these models are highly generalizable.
Nevertheless, in some LMICs viral loads or CD4 counts may lay out-
side even these extended windows, if they are available at all, pre-
venting use of the system. Given the size of the RDI database,

is now recommended in WHO guidelines for monitoring ART re-
sponse.’ Accurate statistics on viral load monitoring in LMICs are
scarce. However, a recent study of its scale-up in sub-Saharan
Africa showed the percentage of patients with viral loads ranged
from 3% (Cote d’Ivoire and Tanzania) to 96% in Namibia. Of 11 mil-
lion patients on ART in the region, 5 million were estimated to have
access to viral load monitoring.? As technological advances en-
able lower costs and point-of-care testing, the use of viral load is
likely toincrease.?%?

The study has some limitations. Firstly, it was retrospective and
no firm claims can be made for the clinical benefit of using the sys-
tem as a treatment support tool. This would require large, pro-
spective clinical trials, for example comparing outcomes for
patients with a change to their treatment managed under stand-
ard of care (SoC) versus SoC plus the HIV-TRePS report.

The models described here were trained to estimate the prob-
ability of response to therapy using a definition of response of
<50 copies HIV RNA/mL. Although recent data strongly suggest
that low-level viraemia predicts virological failure, differences
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Table 6. Results of in silico analysis for the G and NG models

Test set Measure NG1/G1 NG2/G2
NG models
all cases with >3 drugs in their new regimen alternatives predicted to be effective (%) 97 98
2315 cases for NG1 and 2783 for NG2° alternatives with higher probability of response than regimen used in clinic (%) 100 100
subset of the above that failed the new regimen alternatives predicted to be effective (%) 96 96
introduced in the clinic
1433 cases for NG1 and 1716 for NG2° alternatives with higher probability of response than regimen used in clinic (%) 100 100
G models
all cases with >3 drugs in their new regimen alternatives predicted to be effective (%) 93 93

892 cases for G1 and 841 for G2° alternatives with higher probability of response than regimen used in clinic (%) 99.9 99.9
subset of the above that failed the new regimen  alternatives predicted to be effective (%) 90 90
introduced in the clinic

564 cases for G1 and 513 for G2° alternatives with higher probability of response than regimen used in clinic (%) 100 100

“0Only those cases with >3 drugs in the new regimen were used in these analyses.

persist in the definition of virological response used in the clinic.??
The US AIDS Clinical Trials Group (ACTG) define virological failure as
a confirmed viral load >200 copies/mL.6 The WHO, however,
defines virological failure as persistent plasma RNA levels
>1000 copies/mL after 3 months with adherence support.*® Other
groups are using 400 copies/mL.**

The models may predict that a certain combination of drugs is like-
ly to fail (viral load >50 copies/mL) with no indication of the probability
of the viral load being below a different cut-off, e.g. 17000 copies/mL.
Studies are now ongoing to develop models that predict absolute
viral load value over time following a treatment change.

Conclusions

Computational models developed using large, heterogeneous
data sets with relatively permissive rules governing the timing of
baseline data can be highly accurate predictors of virological re-
sponse to combination ART, even without a genotype. Such mod-
els are of enhanced utility in settings with infrequent laboratory
monitoring.

Attempts to remove any possible contamination of training
with data from non-adherent patients continue. A new filter for
presumed non-adherence removed around 5% of training data
and led to a very smallincrease in accuracy.

The models were able to predict responses to tipranavir, mara-
viroc and elvitegravir for the first time and with accuracy compar-
able with that of other antiretrovirals, again expanding the utility
of the system.

These latest models are better predictors of response to ther-
apy than genotyping with rules-based interpretation, even when
those models do not use a genotype for their predictions. Since use
of these models is free of charge, this suggests that scarce funds in
LMICs would be better spent on antiretroviral drugs and viral load
testing than on genotyping. This would enable a greater range of
treatments to be offered, treatment failure to be detected earlier
and optimal, individualized treatment change decisions made
using the models.

Full validation of this approach as a clinical tool would require a
prospective, controlled clinical trial. Nevertheless, the results

suggest that these models have the potential to reduce virological
failure and improve patient outcomes in all parts of the world, with
particular utility in LMICs. The use by clinicians of this tool to sup-
port optimized treatment decision-making in the absence of resist-
ance tests could also combat the development of drug resistance
and its contribution to treatment failure, disease progression and
onward viral transmission.

The global models described in this paper are freely available to
use online through the HIV-TRePS system at http://www.hivrdi.
org/treps.
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