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Abstract

Motivation: The dengue virus poses a major global health threat, with nearly 390 million infections annually.

A recently proposed hierarchical dengue nomenclature system enhances spatial resolution by defining major

and minor lineages within genotypes, aiding efforts to track viral evolution. While current subtyping tools

– Genome Detective, GLUE, and NextClade – rely on computationally intensive sequence alignment and

phylogenetic inference, machine learning presents a promising alternative for achieving accurate and rapid

classification.

Results: We present Craft (Chaos Random Forest), a machine learning framework for dengue subtyping. We

demonstrate that Craft is capable of faster classification speeds while matching or surpassing the accuracy

of existing tools. Craft achieves 99.5% accuracy on a hold-out test set and processes over 140 000 sequences

per minute. Notably, Craft maintains remarkably high accuracy even when classifying sequence segments as

short as 700 nucleotides.

Contact: danielvanzyl@sun.ac.za

Supplementary information: A supplemental table acknowledging the authors of the GISAID dengue

sequences is available at Bioinformatics online.

Introduction

Dengue is a systemic viral infection transmitted primarily by

Aedes mosquitoes that poses a significant global health threat.

Primarily affecting tropical and subtropical regions, dengue can

lead to severe illness and even death, with approximately 390

million infections occurring annually (Bhatt et al., 2013).

The traditional classification of the dengue virus is structured

around four primary serotypes, each subdivided into distinct

genotypes. Initially, genotypes were defined by a pairwise genetic

distance greater than 6% within a 240 nucleotide sequence of

the envelope (E) coding region (Rico-Hesse, 1990). With the

accumulation of more extensive sequence data, this classification

expanded to incorporate entire protein-coding regions. Many of

these genotypes were established two to three decades ago (Twiddy

et al., 2003; Lanciotti et al., 1994). This traditional framework has

played a pivotal role in capturing the transmission dynamics of

the dengue virus. However, enhanced global sequencing capacity,

coupled with its integration into public health systems, has the

opportunity to achieve finer granularity in classifying the diversity

of dengue.

Hill et al. (2024) proposed a refined dengue virus nomenclature

system that introduces additional classification levels, termed

major and minor lineages, within each genotype. This addresses

key limitations of the traditional genotype-based classification

system, including its inability to fully capture the genetic diversity

of the virus and the growing demand for finer spatial resolution.

The proposed nomenclature draws inspiration from the Pango

system, a hierarchical lineage system designed to track the
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evolution of SARS-CoV-2 (Rambaut et al., 2020), as well as

systems implemented for rabies (Campbell et al., 2022) and mpox

viruses (Happi et al., 2022). Alongside their lineage designation

system, Hill et al. Hill et al. (2024) referred the reader to three

publicly available subtyping tools that could be used to classify

sequences according to the new nomenclature; namely Genome

Detective, GLUE, and Nextclade.

The Genome Detective subtyping tool (Fonseca et al., 2019)

performs lineage classification in a two-step process: species

identification and clade assignment. During species identification,

the serotype is identified using BLAST (Altschul et al., 1990) to

generate up to three potential matches. Advanced Genome Aligner

(AGA) (Deforche, 2017) refines these matches by computing

overlap and concordance scores. The sequence is assigned to the

reference with the highest product of these scores. During clade

assignment, maximum likelihood phylogenies are constructed

using IQ-TREE 2 (Minh et al., 2020). The Genome Detective

dengue typing tool is available as a free web application1.

GLUE (Singer et al., 2018) employs Maximum Likelihood

Clade Assignment (MLCA) for genotyping, leveraging reference

phylogenies for robust sequence classification. MAFFT (Katoh

et al., 2002) integrates query sequences into the multiple

sequence alignment. The RAxML Evolutionary Placement

Algorithm (Stamatakis, 2014) determines the optimal placement

of the query within a fixed reference tree. During clade assignment,

the GLUE engine interprets phylogenies to classify sequences

based on evolutionary distance and topological relationships

relative to reference sequences. GLUE is available as a free local

command-line tool2.

Nextclade (Aksamentov et al., 2021) assignments are based

on identifying the critical substitutions that define lineages.

During substitution analysis, uniquely informative nucleotide

and amino acid substitutions are identified, with substitutions

mapped to polyprotein-coding regions. The identification of these

substitutions associated with previously classified branches is done

manually to ensure accurate substitution association with the

developed classification. Substitution tables are then generated

following Augur Clades standards. Upon inference, these critical

substitutions are then identified and used to inform classification.

NextClade is available as both a free web application and a

command-line tool3.

Genome Detective, GLUE, and NextClade, in conjunction

with most current sequence classification methods, are based on

sequence alignment and phylogenetic inference. Both processes are

computationally expensive. Additionally, alignment-based tools

often assume sequence collinearity; they expect sequences to be

arranged in the same order. This assumption is frequently violated

in real-world conditions, especially in viral genomes, which are

characterized by high mutation rates and frequent recombination

events (Zielezinski et al., 2017).

Alignment-free (AF) sequence comparison techniques, as

the name suggests, do not rely on traditional sequence

alignment (Zielezinski et al., 2019), instead drawing on

statistical and mathematical methods to compare sequences

based on their composition. Most AF techniques reduce

sequences to numerical vectors representing their most informative

1 https://www.genomedetective.com/app/typingtool/dengue/
2 https://github.com/giffordlabcvr/Dengue-GLUE
3 https://clades.nextstrain.org

characteristics (Bonidia et al., 2021), which can then be used to

calculate pairwise distances for phylogenetic classification.

AF techniques have been more recently adopted as feature

extraction techniques for machine learning applications. Cacciabue

et al. (2022) developed Covidex , an AF tool leveraging k-mer

frequency profiles as input for Random Forest classifiers, achieving

96.56% accuracy in classifying 1 437 SARS-CoV-2 Pango lineages.

Building on this, INFINITy (Cacciabue and Marcone, 2023) was

introduced as an AF tool for influenza virus subtyping and clade

classification, also utilizing k-mer embeddings and Random Forest

models.

Wade et al. (2024) provided a comparative analysis of sequence

vectorization methods for HIV-1 subtyping and identified k-mer-

based feature extraction combined with XGBoost as the most

effective approach.

Finally, van Zyl et al. (2024) evaluated six alignment-free

(AF) methods as feature extraction techniques for rapid and

scalable machine learning-based viral sequence classification. They

showed that word-based techniques achieve over 97% classification

accuracy when distinguishing 3 502 distinct SARS-CoV-2 lineages

using a dataset of 297 186 sequences. Additionally, Van Zyl et

al. applied AF feature extraction techniques to dengue and

HIV datasets and achieve near-perfect classification accuracy for

dengue (serotype and genotype) and over 89% accuracy for HIV.

In this paper, we introduce Craft (Chaos Random Forest)4,

a machine learning approach for dengue subtyping under the

newly proposed dengue nomenclature. Craft uses a novel

feature extraction technique which modifies the Frequency Chaos

Game to be bitwise in combination with a Random Forest

classification model. With Craft, we are able to achieve highly

competitive classification performance compared to Genome

Detective, NextClade and GLUE, whilst being significantly less

computationally expensive.

Methods

The objective of this research is twofold: first, to identify a machine

learning method that is computationally efficient and can achieve

high classification accuracy for subtyping according to the newly

established dengue nomenclature; and second, to compare both the

classification accuracy and speed of this method against existing

dengue subtyping tools.

Data Curation

To train and evaluate supervised machine learning models

for our experiments, we required a comprehensive dataset of

complete dengue sequences along with their corresponding lineage

assignments.

We sourced complete nucleotide sequences from the Global

Initiative on Sharing All Influenza Data (GISAID) and the

National Center for Biotechnology Information (NCBI) databases.

To ensure high-quality data for reliable analysis, we only included

sequences with coverage greater than 95%. No additional filters

were applied, allowing the inclusion of sequences from any

geographic location or collection date. This process resulted in an

initial dataset comprising 19 470 complete nucleotide sequences.

4 Craft is being used by the Fast tool to classify Dengue.
https://fast.pathotrack.health
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For lineage assignments, we utilized Genome Detective, GLUE,

and NextClade to assign lineages to the selected sequences. All

three tools used the latest version of the dengue nomenclature

as of December 20th, 2024. Sequences were divided into batches

of 1 000, to ensure that each batch contained sequences from

only a single serotype. This segmentation was necessary, as both

NextClade and GLUE can only perform subtyping within a single

serotype at a time. For each batch, we captured the time it took

to complete the assignment process. Thus, each sequence in the

dataset received three lineage assignments, one from each tool. We

excluded sequences from further analysis for which any of the tools

failed to provide an assignment.

The global spread of dengue has led to an uneven distribution

of lineages in the available dataset, creating a risk of unintended

bias in machine learning models that might subsequently favor

more prevalent lineages. To mitigate the issue of class imbalance,

we limited the dataset to a maximum of 100 samples per class,

according to lineage assignments provided by Genome Detective.

Although this approach allowed certain GLUE and NextClade

classes to potentially exceed the 100-sample limit, the overlap

among the three labeling tools was substantial enough for this

variation to be considered negligible in the context of training

machine learning models.

To further refine the dataset, we ensured that each class had

a sufficient number of training samples across the assignments

provided by each labeling tool. This resulted in the issue that

the removal of samples due to label gaps in one tool could

inadvertently impact the class distribution in another. To address

this complexity, we tested various values for minimum class size

threshold and ultimately selected a threshold of six samples per

class per tool. This approach provided an optimal balance between

ensuring sufficient training samples per class and maintaining a

representative number of distinct classes. Of the initial 185 classes,

only 13 were excluded for failing to meet this minimum threshold.

This final refinement reduced the dataset to 8 506 sequences.

To assess the consistency of classification among the three

subtyping tools in the finalized dataset, we conducted a

comparative analysis of the lineage assignments provided by

Genome Detective, GLUE, and NextClade. The results of this

comparison are summarized in Table 1.

Table 1. Agreement frequency between Genome Detective, GLUE and

NextClade class assignments.

Agreement Category Frequency

All Agree 6 152 times

Only Genome Detective & NextClade Agree 2 159 times

Only Genome Detective & GLUE Agree 107 times

Only NextClade & GLUE Agree 70 times

None Agree 18 times

Among the 8 506 observations, all three tools agreed on the

lineage assignment in 6 152 cases. In the majority of instances

where only two tools agreed on an assignment, GLUE was the

outlier. Notably, there were only 18 cases where all three tools

assigned completely different labels.

Given the observed disagreement among the tools, we

established a consensus labeling approach for model training and

evaluation. Consensus labels were determined using a majority-

vote strategy: for each sample, the label assigned by at least two

of the tools was selected. In the 18 cases where all three tools

assigned different labels, the consensus label was derived based on

the most specific evolutionary level agreed upon by at least two

of the three tools. For example, if the supplied predictions were

3III B, 3III B.3, and 3III, the assigned consensus label would be

3III B, the most specific assignment for which two of the tools

agree.

After establishing the consensus label set, the dataset was

stratified by lineage (according to the consensus labels) and split

into training and testing sets using a 5:3 ratio. Each class within

the consensus set included a minimum of eight observations. This

division enabled 5-fold cross-validation for model validation while

preserving the integrity of the dataset for testing.

Feature Extraction: The Bitwise Chaos Game Representation

Building on the findings of van Zyl et al. (2024), we used

the Frequency Chaos Game Representation (FCGR) to extract

descriptive feature vectors from the dengue sequence dataset. van

Zyl et al. (2024) demonstrated that Random Forest models trained

on FCGR feature vectors for both SARS-CoV-2 and dengue

(serotype and genotype classifications) achieved the highest

accuracy and Macro F1 scores among the feature extraction

methods considered in their study.

The FCGR process begins by generating an image with

resolution r x r, where r is a hyperparameter that determines

the granularity of the representation. Each corner of the image

is assigned one of the four nucleotide bases: A, C, T, or G.

The input sequence is then processed character by character,

starting at the center of the image. For each nucleotide read,

the process moves halfway toward the corresponding corner and

increments the pixel value at the resulting location by one,

following the principles of the chaos game. This continues for the

entire sequence, skipping ambiguous bases. The resulting image,

which captures the nucleotide frequency distribution in spatial

form, is then flattened into a feature vector. The FCGR vector

can be computed efficiently in linear time.

In this research, we explored a modification of the FCGR.

Instead of tallying pixel counts, this approach uses binary values

to indicate only the presence or absence of specific pixels. This

modified representation, referred to as the Bitwise Chaos Game

Representation (BCGR), achieves competitive accuracy when used

with Random Forest models while offering distinct advantages.

BCGR simplifies the feature set, reduces model complexity, and

minimizes storage requirements. The similarity between BCGR

and FCGR depends on the resolution (r) and the length of

the sequences that are analyzed. At higher resolutions (r), the

probability of pixels being incremented multiple times in the

FCGR decreases. Conversely, with longer sequences, the likelihood

of pixels being incremented multiple times increases.

Cross-Validation

We used 5-fold cross-validation on the training set to optimize

the parameters for both the feature extraction techniques and

the Random Forest models. For the Random Forest classifiers,

we evaluated two splitting criteria: Gini impurity and entropy.

Additionally, we tested two class-weighting schemes: no weighting

and a balanced weighting scheme designed to mitigate class

imbalance. All Random Forest models consisted of 100 trees,

ensuring sufficient saturation with negligible gains from further

increases.
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Table 2. Cross-validation classification accuracy results for FCGR and BCGR when trained and validated on the different label sets. The top 5 000 features

refer to the 5 000 most informative features as determined by a pre-trained Random Forest.

Model Feature Set Genome Detective GLUE NextClade Consensus

FCGR Full 0.989±0.003 0.964±0.005 0.995±0.001 0.992±0.001

FCGR Top 5000 0.988±0.004 0.964±0.006 0.996±0.001 0.992±0.003

BCGR Full 0.987±0.005 0.964±0.005 0.995±0.001 0.992±0.001

BCGR Top 5000 0.989±0.004 0.963±0.006 0.995±0.001 0.993±0.003

For feature extraction, we utilized both FCGR and BCGR

representations, evaluating resolution values (r) ranging from

32 to 256 in doubling increments. Although Random Forest

models inherently perform feature selection, we improved inference

efficiency by identifying the 5 000 most informative features from

each trained model. We then subsequently trained Random Forests

on these reduced feature sets and included them in our model

validation experiments.

We conducted an extensive grid search to identify the optimal

parameters for all possible configurations. The cross-validation

process was performed using training labels provided by Genome

Detective, GLUE, and NextClade individually, as well as the labels

of the consensus set. In cases where a class had insufficient samples

to support 5-fold cross-validation, we excluded that class from

the training set for the corresponding experiment. This decision

had minimal impact on the class distributions, affecting only five

classes in the GLUE label set.

Our findings indicate that for all models, a resolution of

128, combined with balanced class weighting and the entropy

splitting criterion, yields the highest validation accuracy. Table 2

summarizes the best validation accuracy scores achieved for each of

the four considered Random Forest models and shows the average

accuracy and standard deviation of the 5 folds.

Notably, all four feature extraction schemes yield very

similar classification accuracy. Interestingly, the Random Forest

models trained on the NextClade labels achieves the highest

validation accuracy, suggesting that the labeling logic employed

by NextClade is the easiest to replicate. Evaluation of the

feature extraction schemes on the consensus label set reveals

that the streamlined BCGR approach, which uses only the

5 000 most informative features, achieves comparable accuracy

while significantly improving computational efficiency. Based on

these results, we selected this model structure or the subsequent

experiments on the hold-out test set. We named the chosen

architecture Craft (Chaos Random Forest), alluding to the

combination of a chaos-based feature representations with a

Random Forest model.

Before conducting the final evaluations on the hold-out testing

set, we further assessed Craft’s performance by comparing its

validation results when trained on labels from each tool and then

validated on each of the other tools’ labels. The findings are

summarized in Table 3.

In Table 3, we also report the accuracy scores of Genome

Detective, GLUE, and NextClade when compared against each

other’s labels as well as the consensus set.

Craft models trained on labels from a specific tool achieved

performances closely aligned with that tool’s labeling patterns.

Additionally, the Craft model trained on the consensus label set

consistently achieved the second-highest accuracy when compared

to the labels of each of the three subtyping tools, with the highest

accuracy naturally belonging to the respective tool itself. This

reinforces our choice of the consensus label set and indicates that

it provides a balanced representation of the three tools.

All subsequent evaluations are based on the hold-out test set

of the consensus label set.

Classification of Sequence Segments

Accurately obtaining high coverage complete dengue sequences is

often challenging due to the rapid decrease in viral load following

the short viremic phase that typically precedes sample collection

(Guzman et al., 2010). Although the global capacity for whole

genome sequencing has improved significantly, largely due to

the genomic infrastructure developed during the SARS-CoV-2

pandemic, many laboratories continue to sequence only the E

coding region. This region is often prioritized as it suffices for

genotyping and is faster than whole genome sequencing.

In scenarios of limited genome coverage, Hill et al. (2024)

demonstrated that even partial sequences can achieve high

classification accuracy. Building on this insight, we recognized

the potential challenges posed by incomplete sequencing and the

possibility that only specific genomic regions may be available.

To address this, we extended the evaluation of classification

performance beyond the commonly studied E coding region,

exploring the efficacy of subtyping models when applied to various

partial genomic segments. Specifically, we investigated the models’

abilities to classify sequences based on random stretches of only

700 nucleotides.

To achieve this, we trained multiple Craft classifiers, each

tailored to classify sequences from a specific 500-nucleotide

segment of the genome. These segments were derived from

aligned sequences using NextClade, with consecutive segments

overlapping by 400 nucleotides. This overlap ensured that every

new segment began 100 nucleotides after the previous one,

providing comprehensive coverage of the genome. Separate sets

of Craft classifiers were trained for each dengue serotype, and

each classifier utilized the full set of features generated by the

BCGR representation, rather than the reduced set of 5 000 most

informative features.

For each serotype, the corresponding NextClade reference

sequence was divided into similar overlapping 500-nucleotide

segments, and the BCGR representation was computed for each

segment. During inference, a given 700-nucleotide sequence was

analyzed by extracting its central 500 nucleotides and comparing

its BCGR representation to the BCGRs of all reference segments.

Using a 1-nearest-neighbor approach, the segment with the closest

Hamming distance was identified, enabling accurate prediction of

both the general segment location and the corresponding serotype.

To improve the alignment of the inference segment with its

matched reference segment, we refined the match by computing

the Hamming distance between the BCGR of every possible 500-

nucleotide stretch within the 700-nucleotide inference sequence
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Table 3. Validation performance of all models on the different label sets (indicated by the four right-most column headings). The training set used for

each Craft model is indicated in the “Training Labels” column.

Model Training Labels Genome Detective GLUE NextClade Consensus

Genome Detective - 1.000 0.737 0.977 0.991

GLUE - 0.737 1.000 0.732 0.745

NextClade - 0.977 0.732 1.000 0.986

Craft Genome Detective 0.989±0.004 0.736±0.009 0.978±0.005 0.987±0.003

Craft GLUE 0.746±0.008 0.963±0.006 0.743±0.009 0.754±0.010

Craft NextClade 0.974±0.004 0.732±0.003 0.995±0.001 0.982±0.003

Craft Consensus 0.984±0.004 0.742±0.006 0.983±0.003 0.993±0.003

and the BCGR of the matched reference segment. The alignment

with the minimum Hamming distance was deemed the most

optimal.

Once the inference sequence was aligned with the reference

segment, the predicted match position and serotype were used

to load the appropriate Random Forest model for that segment.

This model was then applied to classify the sequence.

As with previous experiments, we employed 5-fold cross-

validation and a grid search to identify the optimal parameter

configurations for the models. For this experiment, we chose not

to use the reduced feature sets, instead utilizing the full BCGR

feature representation. Entropy-based splitting, balanced class

weighting, and a resolution of r continued to deliver the best

performance on the validation set.

The validation dataset was constructed by randomly selecting

five 700-nucleotide segment from each sequence. To ensure

sufficient sequence coverage, the starting position of these

segments was restricted to a minimum of the 200th nucleotide and

a maximum of the 9 500th nucleotide, as many sequences lacked

sufficient data at the extreme ends. The hold-out test set was

augmented in a similar manner to for the final evaluation.

Results & Discussion

The results presented in this section are solely with regards

to experiments conducted on the hold-out test set using 10

independent trials for each experiment. In each trial, 80% of the

training set was randomly sampled using stratified sampling based

on the consensus labels to train the model, followed by evaluation

on the test set. To ensure variability in the sampled training data,

different random seeds were used for each trial. This methodology

allowed us to assess the model’s performance variation across

different training data subsets.

Model performance was evaluated using two metrics: overall

classification accuracy and Macro F1 score. While accuracy

measures the proportion of correct predictions across all classes,

it can be misleading in the presence of class imbalances. The

Macro F1 score, which averages the F1 scores of individual classes,

provides a more balanced assessment, capturing the model’s

effectiveness across both majority and minority classes.

Machine learning-based approaches face a significant limitation

in their reliance on extensive training datasets to achieve

suitable classification performance. This poses challenges when

new lineages are introduced into the nomenclature with limited

available training examples. To evaluate the robustness of Craft

for dengue classification, we also present performance results from

a scenario where the Craft model is trained under limited data

conditions, using only four samples per class per trial.

Hierarchical Performance

Table 4 contains the classification performance results for different

hierarchical levels of dengue virus classification on the hold-out

testing set for each model on the consensus labels.

All four models achieve perfect accuracy at the serotypic

level. Across the four classification levels, Craft consistently

demonstrates the highest classification accuracy. Notably, at the

genotypic and major lineage levels, NextClade achieves the second-

highest accuracy. However, as classification granularity increases

to the minor lineage level, NextClade’s performance (0.986)

declines below that of Genome Detective (0.991). Regarding the

Macro F1 score, Craft outperforms all models except at the major

lineage level, where NextClade achieves a marginally higher score.

Under the limited training data scenario, Craft exhibits a

notable decrease in classification performance compared to the

full training context. Nevertheless, it maintains high accuracy and

Macro F1 scores, remaining competitive with both NextClade and

Genome Detective up to the minor lineage level.

Similarly, GLUE demonstrates competitive classification

performance up to the minor lineage level. However, at this level

of granularity, its performance declines significantly compared to

the other models.

It should be noted, that these results should be interpreted

with caution and are not intended to imply that any one model

is inherently more accurate than another in a general context.

In the absence of an expertly constructed ground truth label

set, true model accuracy cannot be definitively determined. Our

findings are specific to the consensus label set used in this study.

While these results primarily reflect the tendencies and agreement

patterns among the models, they clearly demonstrate that Craft

achieves performance highly competitive with that of Genome

Detective and NextClade.

Class-wise Performance

Figure 1 offers a detailed visual comparison of the performance

of Craft, Genome Detective, and NextClade across the various

dengue lineages. GLUE’s results were excluded from this analysis,

given its significantly lower performance compared to the other

models.

The class-wise performance results provide valuable insights

into the behavior of each model. Notably, all three models achieve

perfect performance in the majority of classes. However, for

classes where this is not the case, we can observe significant

performance drops, particularly for Genome Detective and

NextClade. Consistent with the Macro F1 score findings, Craft

demonstrates the most consistent performance across all classes.
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Table 4. Accuracy and Macro F1 Scores for serotype, genotype, major lineage, and minor lineage for Craft, Genome Detective, NextClade, and GLUE.

Craft results are reported according average and standard deviation across 10 trials.

A
c
c
u
r
a
c
y

Model Serotype Genotype Major Lineage Minor Lineage

Genome Detective 1.0 0.997 0.992 0.991

GLUE 1.0 0.998 0.932 0.744

NextClade 1.0 0.999 0.994 0.986

Craft (Limited training data) 1.0 0.999 0.986 ± 0.003 0.969 ± 0.003

Craft 1.0 1.000 0.996 ± 0.001 0.995 ± 0.001

M
a
c
r
o

F
1 Genome Detective 1.0 0.980 0.986 0.989

GLUE 1.0 0.950 0.860 0.665

NextClade 1.0 0.994 0.991 0.979

Craft (Limited training data) 1.0 0.994 ± 0.001 0.963 ± 0.006 0.958 ± 0.005

Craft 1.0 0.997 ± 0.002 0.989 ± 0.003 0.991 ± 0.001

Table 5. Accuracy and Macro F1 Scores for serotype, genotype, major lineage, and minor lineage across various models when classifying dengue sequences

based only on a random segment of 700 nucleotides.

A
c
c
u
r
a
c
y

Model Serotype Genotype Major Lineage Minor Lineage

Genome Detective 1.000 0.894 0.782 0.697

GLUE 1.000 0.994 0.923 0.726

NextClade 0.995 0.974 0.956 0.921

Craft (Limited Training) 1.000 0.998 ± 0.001 0.965 ± 0.004 0.913 ± 0.001

Craft 1.000 0.998 ± 0.002 0.990 ± 0.003 0.972 ± 0.001

M
a
c
r
o

F
1 Genome Detective 1.000 0.923 0.829 0.748

GLUE 1.000 0.997 0.887 0.457

NextClade 0.998 0.949 0.972 0.930

Craft (Limited Training) 1.000 0.989 ± 0.090 0.942 ± 0.040 0.932 ± 0.080

Craft 1.000 0.994 ± 0.040 0.991 ± 0.030 0.972 ± 0.040

The performance of the models shows no clear trends related to

specific serotypes or hierarchical classification levels. Interestingly,

the models exhibit largely distinct patterns of misclassification,

rarely making the same errors across classes.

Segment Classification

Table 5 contains the accuracy and Macro F1 scores when

classifying dengue sequences based only on a random stretch of

700 nucleotides. We report the mean results achieved by Craft

and their standard deviation across 10 trials.

Across all metrics and classification levels, Craft consistently

outperforms the other models. All models exhibit a marked decline

in classification performance compared to full-genome subtyping,

with this decrease being most pronounced for Genome Detective,

which achieves an accuracy of only 0.696 at the minor lineage level.

At this most granular level, NextClade demonstrates the second-

highest performance among the models. However, NextClade also

shows instances of errors at the serotypic level, indicating notable

deviations from the consensus labels.

Unlike the complete sequence performance results, these

findings can be interpreted more strongly, as the performance

degradation of each model is clear, even without ground truth

labels. With this in mind, Craft’s performance shows only minor

degradation. Furthermore, when applied to a limited training

scenario, Craft still achieves over 90% classification accuracy at

the minor lineage level, very closely competing with NextClade,

while achieving a higher Macro F1 score at that level.

Figure 2 illustrates the average classification accuracy of Craft,

Genome Detective, GLUE, and NextClade across different regions

of the dengue genome, measured by the starting positions of 500

nucleotide segments.

Across most genomic regions, Craft demonstrates the highest

average classification accuracy. Additionally, both Craft and

NextClade exhibit lower performance variation across different

regions than GLUE and Genome Detective. Variability in

model performance indicates that certain genomic regions are

more informative for lineage assignment, though instances of

simultaneous performance drops across all models are rare.

Notably, in the region surrounding the ‘E’ gene, which is the most

commonly sampled segment in lieu of the whole genome, Craft

and NextClade consistently achieve higher accuracy than GLUE

and Genome Detective across all four serotypes.

Classification Throughput

An additional advantage of AF feature extraction, particularly

BCGR combined with Random Forest classification is its superior

classification throughput and resource efficiency compared to

traditional alignment-based methods and phylogenetic inference.

To demonstrate this, we compared the classification throughput

of Craft with Genome Detective, NextClade, and GLUE.

For Genome Detective, throughput measurements were

obtained using its online web application. Craft and GLUE

were benchmarked locally on a system with 24 GB of RAM

and an Apple M4 Pro processor. For NextClade, throughput

was evaluated both via its online web application and a local
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Fig. 1: Composite radar-chart of class-wise model performance. Classes are colored according to serotype and genotype. The blue, red

and green dotted lines represent Craft, NextClade and Genome Detective respectively, with lines closer to the perimeter indicating better

performance. The length of each bar corresponds to the evolutionary depth of the lineage.

computation setup. We calculated the average and standard

deviation of classification throughput for each model using the

complete set of 19 470 dengue sequences. These sequences were

processed in batches of 1 000, with each batch containing sequences

exclusively from a single serotype. Table 6 lists the relevant results.

The recorded timings should not be considered exact due to

differences in computational setups and conditions, however, they

provide a reasonable approximation of classification throughput of

the various methods. Among the models, Genome Detective is by

far the slowest, with an average throughput of just 4.628 sequences
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Fig. 2: A collection of line plots showing the accuracy of each model when tested on short genomic segments from various positions

within the dengue genome. Each plot corresponds to a particular serotype. We include horizontal bars indicating the positions of each

gene region for each serotype.

per minute. In contrast, NextClade, despite being an alignment-

based method, achieves a significantly higher throughput,

averaging 7 067.87 sequences per minute. The efficiency advantage

of alignment-free subtyping tools becomes particularly evident

with Craft achieving an extraordinary throughput of over 140 000

sequences per minute.

While the current volume of dengue sequences may not

fully exploit the speed advantage of Craft over NextClade, its

potential becomes clear when considering the rapid growth of
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Table 6. The average throughput of Genome Detective, GLUE, NextClade

and Craft in sequences per minute from 19 independent runs.

Model Classification Throughput

Genome Detective 4.628± 1.505 seq/min

GLUE 63.25± 3.51 seq/min

Nextclade (Local) 7 618.98± 1 872.17 seq/min

Nextclade (Online) 7 067.87± 1 430.61 seq/min

Craft 141 183.70± 1 599.35 seq/min

next-generation sequencing capabilities. The potential benefits of

near real-time tracking become particularly significant in epidemic

scenarios, such as with the SARS-CoV-2 pandemic, where millions

of genomes were sequenced and analyzed.

Conclusion

In this paper, we introduced Craft (Chaos Random Forest),

which is a novel alignment-free machine learning framework for

dengue virus subtyping under the newly proposed hierarchical

nomenclature system. This new nomenclature introduced major

and minor lineage classifications within genotypes, which enables

more granular tracking of dengue virus evolution and spread.

By leveraging a modified Bitwise Chaos Game Representation

(BCGR) for feature extraction, Craft achieves competitive

classification accuracy while significantly outperforming alignment-

based tools such as Genome Detective, GLUE, and NextClade in

terms of computational efficiency. Craft achieves 99.5% accuracy

on a majority-vote consensus label set, and is able to perform to

a high standard when trained on only four examples per class.

Craft particularly excels in scenarios involving only short genome

segments, in which it markedly outperforms current tools.
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