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Infectious disease threats to individual and public health are numerous, varied and 
frequently unexpected. Artificial intelligence (AI) and related technologies, which  
are already supporting human decision making in economics, medicine and social 
science, have the potential to transform the scope and power of infectious disease 
epidemiology. Here we consider the application to infectious disease modelling of  
AI systems that combine machine learning, computational statistics, information 
retrieval and data science. We first outline how recent advances in AI can accelerate 
breakthroughs in answering key epidemiological questions and we discuss specific  
AI methods that can be applied to routinely collected infectious disease surveillance 
data. Second, we elaborate on the social context of AI for infectious disease 
epidemiology, including issues such as explainability, safety, accountability and 
ethics. Finally, we summarize some limitations of AI applications in this field and 
provide recommendations for how infectious disease epidemiology can harness  
most effectively current and future developments in AI.

AI1 is transforming many aspects of contemporary science2 and has 
the potential to similarly change the landscape of infectious disease 
epidemiology. AI can be defined as intelligent behaviour exhibited by 
machines and computers and has been an active area of research since 
the 1950s3. Over the past decade, the focus of AI methods has shifted 
substantially from logic-based approaches4 to those associated with 
deep learning5. In this Perspective, we define AI and related data science 
approaches broadly and therefore include methods from machine 
learning (ML)6, probability theory7, numerical optimization8 and new 
directions in scalable computation9,10.

Infectious disease epidemiology is the study of why infectious dis-
eases emerge, how they transmit within and among populations, and 
of the strategies that can be used to prevent, control and mitigate their 
spread11. Mathematical, computational and statistical modelling is 
an essential component of this interdisciplinary field, and quantita-
tive models are used to inform public health policies and responses 
at local and global scales11. Although much attention has been paid 
to the application of AI to problems in human health, such as patient 
diagnosis12, individual-level disease risk prediction13 and decision 
support for doctors14, there have been fewer demonstrations of the 
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use of AI models for infectious disease epidemiology—mirroring the 
lower uptake of AI methods in population health more generally, 
including for non-communicable diseases15. Yet, effective and sus-
tainable improvements to public health must address determinants 
of health at both the individual and population levels, as well as the 
interactions between them16. New AI approaches that span public health 
and individual outcomes have the potential to transform infectious 
disease responses and enable more targeted, equitable and robust  
interventions.

One possible reason for the relatively lower penetrance of AI in infec-
tious disease epidemiology is the challenge of acquiring large-scale, 
standardized and representative data17 for the training and evaluation 
of AI/ML models with many parameters. However, new AI approaches 
perform increasingly well with limited data. For example, approaches 
based on fine-tuning or transfer learning18 (Box 1) of large pretrained 
networks can achieve strong performance without the need for 
months of initial training or terabytes of data, and recent advances in 
self-supervised learning19 can facilitate further zero-shot learning on 
a range of epidemiological questions (Box 2).

We consider two main topics in this perspective: first, we out-
line how current and anticipated advances in AI can change how we 
answer key questions in infectious disease modelling. For example, 
new AI methods can improve the collection and integration of het-
erogeneous data sources, and AI/ML could be included in policy and 
decision-making frameworks to improve population health. Second, 
we discuss some social and ethical contexts of the application of AI to 
infectious disease epidemiology; we consider the explainability, safety 
and accountability of AI in public health, and provide recommendations 
for how infectious disease epidemiology can harness developments in  
AI effectively.

 
AI to answer epidemiological questions
One of the key challenges during the early stages of an epidemic is to 
understand the severity and epidemic potential of the infectious agent. 
This involves estimating fatality ratios, serial and generation intervals, 
transmissibility and epidemic growth rates, as well as inferring infec-
tion networks and transmission heterogeneity in different settings20 
(Box 2). In traditional epidemiology, these questions are often answered 
using observational data (such as case–control studies, cohort studies 
or household surveys)21. However, the small scale of such studies and 
the idiosyncrasies of data collection mean that the true transmission 
process is observed imperfectly and may not be representative of the 
whole epidemic. The actual chain of infection events and locations 
where infections occur is often uncertain (for example, individuals may 
visit multiple locations and contact many people, some of whom might 
be infectious but asymptomatic), hindering efforts to accurately meas-
ure quantities such as the incubation period or transmission intensity 
from observational data alone. Other issues include underreporting, 
censoring, truncation, non-random data omission and uneven data 
reporting. Here, Bayesian data augmentation22 has proven valuable in 
improving parameter inference in the context of missing data, and AI 
approaches can help in the scalability and inference of such models23 
(Fig. 1a). A promising direction involves approximate Bayesian inference 
such as that based on variational inference with normalizing flows24. 
This reframes the problem from one of sampling to optimization, 
which can be addressed efficiently using gradient-based deep learning 
techniques. Use of these tools makes fast and accurate inference more 
achievable, especially when inferences have to be completed quickly.

Given the difficulties in generating a complete description of the 
transmission tree that underlies an epidemic, model-based analyses 

Box 1

Glossary
Active learning is a ML framework designed to minimize data 
labelling efforts; the model iteratively asks a human user to label 
relevant samples and the model learns from the replies.
Bayesian optimization is used to numerically optimize a function that 
is difficult to optimize or evaluate using conventional approaches.
Causal inference refers to a diverse suite of statistical methods that 
investigate and exploit the cause–effect relationships that underlie 
observed associations.
Explainable AI is a set of methods that enable human users to 
comprehend the output created by ‘black box’ ML algorithms (that is,  
algorithms and models of which the internal workings are not easily 
accessible or interpretable).
Deep generative models are ML models that use deep neural 
networks to generate/simulate new data that are similar to the 
training data.
Fine-tuning refers to the training of a previously fitted model (that is,  
a pre-trained model) on a new task. It is a type of transfer learning 
and is typically used in cases in which data are scarce.
Foundation models refers to very large deep learning models that are 
pre-trained on vast, general-purpose, datasets—for example, LLMs.
Graph neural networks are a family of artificial neural networks for 
processing graph-structured data (for example, social networks or 
protein structures).
Mechanistic epidemic models are models in which a plausible 
mechanism for the infection process is represented in an analytical 
or simulation framework (for example, using differential or 
difference equations).

Multimodal learning refers to approaches that attempt to leverage 
multiple types of data, such as images and language.
Recurrent neural networks are a family of artificial neural networks 
designed for processing temporal, sequential data. They have been 
used extensively for problems in speech, natural language and 
genetics.
Reinforcement learning is a ML paradigm in which an agent learns 
how to take actions conditioned on its state in an environment, so as 
to maximize a reward signal. With human feedback, these systems 
can be aligned to match human preferences.
Retrieval-augmented generation is a technique to assist LLMs for 
text generation.
Self-supervised learning is a ML method in which a model learns 
from data without labels for guidance (compare with active 
learning).
Surrogate model (or emulation) is a model used to approximate 
another, typically more complex or computationally expensive, 
model.
Transfer learning is a process whereby the knowledge acquired by a 
model from an initial task is leveraged for a later task.
Transformers are neural network architectures that process 
sequences (such as text) in parallel and compute the relationships of 
each part of the sequence to others, enabling an understanding of 
the context of that sequence.
Zero-shot learning refers to the ability of an AI/ML model to 
generalize to a new task or problem that is not represented in the 
dataset used to train the model.
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are performed on routinely collected aggregated data, such as counts 
of cases, hospitalizations or deaths. Mechanistic and semi-mechanistic 
disease transmission models are commonly used to test hypotheses 
and estimate key epidemiological parameters (for example, transmis-
sibility and virulence) with associated uncertainty25. Although these 
models provide substantial mechanistic insights into transmission 
and can be used to construct counterfactual scenarios, they often 
come with considerable computational costs due to the complexity of 
the numerical methods and inference in a high-dimensional parameter 
spaces26. Recent advances in deep generative modelling (Box 1) have 
shown that inference can be accelerated by approximating the original 
model with a generative model surrogate27,28 or by using variational 
inference29 (Box 1 and Table 1). Improvements in the speed of model 
computation offers additional opportunities to increase the model 
complexity and realism, including potential linkages between indi-
vidual transmission heterogeneity and population-level outcomes30. 
As AI-accelerated methods have the potential to reduce model run 
times from weeks to hours, they could substantially speed up the 
iterative process of informing policy decisions and model refinement  
(Table 1).

Prediction and forecasting
During an infectious disease epidemic, policy decisions regarding the 
deployment and timing of interventions rely on reliable estimates of 

the number of current cases and forecasts of future cases31. For a given 
disease, the number of cases, hospitalizations and deaths reported by 
public health surveillance systems over time are analysed to inform key 
policy decisions. Although epidemiological datasets may include a rich 
variety of demographic (such as ethnicity and age), clinical, geospatial 
and pathogen genomic information, at their simplest, they consist 
solely of quantitative trends and can therefore be analysed using a 
range of approaches, including statistical time-series techniques32, 
modern ML methods and advanced deep learning models5 including 
newer foundation models (Table 1).

However, surveillance data cannot tell us directly how many indivi
duals are infectious at any given day, or what the expected future trajec-
tory of cases might be. Epidemic surveillance data are almost always 
noisy and affected by biases in reporting (for example, time-variable 
delays), testing (for example, targeting of limited capacity or willing-
ness to test in certain groups) and sampling (for example, towards 
groups that can more readily access healthcare)33,34. For example, data 
may appear to suggest a declining epidemic, but this trend could be an 
artefact of time-dependent changes in reporting or declining testing 
availability35. These data issues could lead to ineffective and delayed 
responses.

Current approaches to nowcasting35–37 attempt to address these 
systematic biases and enable robust estimation of the contempo-
rary epidemic situation38. However, choosing an optimal nowcasting 
model, which can both generalize to new data and accurately capture 

Box 2

Important epidemiological concepts
Fatality ratio: the proportion of those affected by a disease who do 
not survive, calculated for different subpopulations (for example, 
for cases/reported infections or hospitalizations) and often stratified 
by factors such as age, time and location. The infection fatality 
ratio (that is, the proportion of those infected who subsequently 
die from that infection) is an important population-wide measure of 
disease severity. Given the time lags inherent in both the infection 
process and health reporting systems, it is not appropriate in an 
early, growing epidemic to estimate the infection fatality ratio as 
the number of deaths to date divided by the number of infections to 
date and parametric modelling is required160.
Forecasting: the prediction of a disease’s future trajectory using 
mathematical and/or statistical tools. Generally, trends in summary 
statistics such as incidence or prevalence are predicted forward in 
time on the basis of current and past data. Many approaches blend 
a mix of time-series modelling with mechanistic models of disease 
spread.
Generation interval: the duration between the infection of an 
individual and the infection of one of its secondary infections; this 
length of time varies among infector–infectee pairs and is therefore 
represented by a probability distribution. This value depends on 
factors such as the duration and timing of infectiousness and may 
be affected by the epidemic growth rate or local prevalence of 
infection161. Parameters such as the generation interval and the 
reproduction number strongly determine the growth rate of an 
epidemic and are used to determine the planning, timing and 
evaluation of public health interventions. Precise infection times 
are almost never directly observed; thus, the generation interval 
distribution is usually estimated by a combination of modelling and 
partial observation.
Infection networks: the spread of a contagion through a population, 
represented as a weighted, directed network between infectors 
and infectees162. Although true, complete infection networks are 

rarely observed directly, they can be estimated through a mixture 
of epidemiological and contact pattern data. Key epidemiological 
parameters can then be estimated using generation intervals and 
other data, such as pathogen genome sequences or demographic 
information.
Nowcast: the reconstruction of the current state of the epidemic as 
accurately as possible, when contemporaneous data may be affected  
by reporting delays. Even in the absence of delays, integrating 
information from heterogeneous sources requires data synthesis. 
Nowcasting uses statistical models to debias and synthesize 
multiple, noisy data sources to present a current picture of an 
epidemic.
Reproduction number: the average number of secondary cases 
arising from a single case in a population, also known as the R value. 
If estimated for a situation in which all individuals are susceptible 
to infection, this is termed the basic reproduction number, R0. The 
effective, or time-varying reproduction number, Rt, relaxes this 
assumption and considers the average number of cases generated 
in the current state of the population. The reproduction number is 
typically estimated from data using methods including regression, 
mechanistic models or networks163.
Transmissibility: the propensity of a pathogen to be transmitted 
between individuals, which is a combination of pathogen-related 
factors relating to the pathogen (for example, the size of the inoculum 
and the pathogen’s ability to evade host immune responses) and 
host-related factors (for example, the number and intensity of 
contacts a host makes). Capturing change in transmissibility over 
time is important for planning interventions.
Vaccine effectiveness: a measure of how well vaccination protects 
against infection, transmission and/or symptomatic and severe 
disease, typically measured as one minus the relative risk of the 
outcome in vaccinated versus unvaccinated persons. When measured 
in a randomized trial, the term ‘vaccine efficacy’ is often used.
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complex patterns, is challenging, especially from noisy and incomplete 
data. The simplest solution is to choose a model from a large, complex 
class of models and then try to mitigate any potential overfitting or 
over-parameterization (Fig. 1a). Recent work in which nowcasting and 
forecasting are improved with ensemble methods shows promising 
results and provides successful routes to create model diversity39,40. 
During the COVID-19 pandemic, multiple research groups undertook 
and evaluated epidemic forecasts, accelerating progress towards 
more standardized and rigorous models for informing public-health  
decision making.

Foundation models from large deep neural networks41 represent new 
and powerful ways to explore and understand time-series surveillance 
data and go beyond current approaches. However, these foundation 
models need to be pretrained on hundreds of billions of datapoints 
from a diverse range of time series (across a range of domains); conse-
quently, the patterns that they learn are effective at zero-shot42 (Box 1) 
performance on a range of new surveillance data. The models restrict 
the fitted functions to plausible shapes, helping to accurately quantify 
uncertainty42. Historically, AI models were unable to include rigor-
ous measures of uncertainty, but recent work in deep learning shows 
promise in using activation functions43, ensembles44 and conformal 
prediction45 for the quantification of uncertainty.

 
Modelling mechanisms of disease spread
Infectious disease modelling has relied traditionally on mechanistic 
models that represent the disease transmission process as a simplified 
but definable process. Examples include mathematical susceptible– 
infected–recovered (SIR) equations and individual/agent-based  
models46, in which a simulation of transmission is constructed and each 
agent is assigned specific attributes and events. When fitted correctly 
to rich data, individual-based models generate insights into the trans-
mission process and can be used to evaluate interventions. However, 
parameter inference is much harder to perform using agent-based 
models than for standard statistical techniques owing to their lack of 
analytical components29. Here, AI approaches are providing new ways to 
facilitate efficient inference29 through a range of innovative approxima-
tions that use deep neural networks. For example, by taking advantage 
of variational Bayesian inference, new neural network architectures 
can accommodate large and dynamic agent-based models47. Without 
AI approaches, inference on very large agent-based models is challeng-
ing as the parameter spaces are too large, and generating samples or 
realizations from such models can be time consuming. An alternative 
solution to computational intractability is provided by gradient-based 
methods such as variational inference, as discussed above.
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Fig. 1 | AI approaches to tackling key epidemiological questions. a, Time- 
series analysis using foundation models. Pre-training large-scale foundation 
models with transformer architecture using observations (empirical and/or 
simulated) from time-series epidemic data enables zero-shot applications 
(Box 1) for forward prediction, data imputation and anomaly detection.  
The output from these models can be used to evaluate the effect of public 
interventions and guide capacity planning for future outbreaks. b, Modelling 
infectious disease spread using GNNs. Pathogen dissemination can be 
represented by annotated graphs, in which the nodes correspond to locations 
or individuals and the edges represent potential transmission pathways (such 
as human or vector interactions); each node is associated with a set of features 
(for example, case incidence and population size) that are either indicators or 
drivers of spread. GNNs have the ability to learn complex patterns from such 

data, enabling node classification (predicting disease prevalence), community 
detection (identifying infection clusters) and link prediction (revealing cryptic 
transmission pathways). These insights can provide a detailed understanding 
of the underlying mechanism of disease spread and inform resource allocation 
and targeted interventions. c, Predicting immune-escape mutations using 
biologically informed deep learning models. By taking advantage of recent 
advances in protein structure prediction (such as AlphaFold and ESMFold), 
these models could enable the early detection of pathogens or variants that  
are likely to develop mutations conferring resistance to existing vaccines or 
therapeutics through antibody-binding disruption. Such predictions can 
inform the design of next-generation vaccines and guide the prioritization of 
containment strategies targeted at emerging lineages.
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Dynamical ‘compartment’ models are one of the most commonly 
used analytical tools in mathematical epidemiology, the best known 
of which is the SIR model, which partitions the population into a small 
number of groups (compartments). SIR dynamical models are compara-
tively easy to fit to data but often lack the detail necessary to bridge 
the gap between individual behaviour and population-level dynamics. 
Alternative models based on branching processes48, partial differential 
equations or self-excitatory Hawkes processes49 are growing in popu-
larity and there are strong similarities between these approaches48,50. 
As previously noted, foundation time-series models can be used to 
constrain function space by restricting the set of functions a priori 
and embedding these constraints within a chosen mechanistic model 
(termed semi-mechanistic models). The overall objective is to base 
modelling on plausible epidemiological realities. However, model 
misspecification can still introduce errors. Using these approaches, AI 
models have the potential to not only achieve high predictive accuracy 
within current mechanistic frameworks, but also to learn more complex 
hidden mechanisms that can improve existing models.

Graph neural networks (GNNs) that operate on discrete-structured 
data51 (Fig. 1b) present a particularly promising type of AI for detailed 
understanding and forecasting of infectious disease dynamics52. 
Graphs (or networks) emerge naturally in many areas of infectious 
disease epidemiology, including contact networks of the spread of 
a disease through individuals and populations53, phylogenetic trees 
and networks to track pathogen evolution, and social and information 
networks to understand health behaviours (for example, masking and 
vaccine uptake), the spread of information and misinformation and 
social influence54. Through their ability to represent rich relationships, 
GNNs have recently been shown to accurately predict COVID-19 cases 
per region55, forecast influenza-like illness56 and nowcast vaccine 
uptake from online information networks57. GNNs also show promise 
in expanding dynamical compartmental models to capture complex 
spatiotemporal dynamics among discrete geographical regions58. GNNs 
can expand agent-based models by enabling differentiability of all 

model components, facilitating joint inference over complex models59. 
Finally, future graph-based foundation models may be able to learn 
transferrable representations of graphs that generalize to any unseen 
graph60, therefore potentially enabling the transfer of knowledge from 
data-rich to data-poor settings. Many important discrete problems on 
graphs are NP-hard (non-deterministic polynomial time—finding a 
solution is impossible given current knowledge) and need to be solved 
heuristically. AI approaches through GNNs offer powerful continuous 
optimization tools such as gradient descent, which can improve the 
solving of discrete problems on graphs.

Immunological and genomic interactions
Disease preparedness and response requires the timely detection of 
emerging zoonotic pathogens or new variants of known pathogens. 
Even though genomic surveillance is essential for monitoring the cir-
culating genetic diversity, determining the epidemiological and dis-
ease phenotype of the pathogens identified usually requires time- and 
resource-consuming experimental work. Advances in AI models change 
this paradigm by using genetic sequences as their input, capturing 
information about pathogen proteins61,62. These can pave the way for 
high-throughput prediction of protein structures and pathogen pheno-
types from genomic data, enabling rapid preliminary assessment of new 
phenotypes and ultimately reducing the amount of experimental work 
needed to obtain good predictive performance63 (Fig. 1c). However, 
predicting from small labelled datasets to large unlabelled datasets 
can be error prone, and recent cross-prediction approaches show great 
promise in improving downstream inferences64. AI models applied to 
genomic data can also be used to classify virus lineages65, infer when, 
where and how a pathogen emerged66, predict the pathogen traits 
such as transmissibility67, escapability and spread68, and predict host 
specificity to identify probable cross-species spillovers69,70. AI models 
can also enhance the accuracy of phylogenetic inference, enabling a 
more precise characterization of the infection process.

Table 1 | New AI approaches to answering key questions in infectious disease epidemiology, their potential effects and the 
level of maturity in the scientific and public health community

Problem domain Method Potential effects Level of maturity

Inference of epidemiological 
parameters

Generative Bayesian and 
surrogate models36

Incremental improvements in the speed and 
accuracy inferring epidemiological estimates, 
especially when data are missing. Faster 
generation and iteration of model results for policy.

Bayesian methods can be implemented 
easily in available software packages. 
Surrogate models need to be developed for 
specific applications153.

Epidemic forecasting/
nowcasting

Time-series foundation 
models154 and ensemble 
techniques39

Potential for improved speed and accuracy in 
estimating future trajectory of cases. Better 
generalization of trends for medium term forecasts

Ensemble forecasting is standard practice 
in influenza and COVID-19 modelling. 
Several foundation time-series models exist 
and are easy to access but have yet to be 
implemented.

Scenario modelling Compartmental, mechanistic 
models155 and RL agent-based 
models156

AI’s impact may be limited because mechanistic 
models better capture the impact of interventions. 
AI models can be used for RL156 for de novo 
discovery of individual behavioural adjustments 
and policy options, and to speed up the generation 
of realistic future scenarios.

RL neural network architectures exist, but 
bespoke versions need to be created for 
specific applications in infectious disease 
modelling.

Understanding mechanisms 
of disease spread

GNNs94 and graph foundation 
models60

The ability to incorporate large amounts of 
structured data with the potential for improved 
inference of disease transmission routes.

Early research outputs

Infectious disease 
surveillance

Active learning157 and Bayesian 
optimization

Improved cost-effectiveness through the focus 
on collection of the most valuable data.

Early research with limited 
implementation to date

Risk prediction Multimodal AI158 Improved inference of risk factors of severe disease 
from multiple data types.

Early research with potential applications in 
population health

Analysing pathogen 
genomes

Protein language models68,71 New applications are possible for improved design 
of vaccines and therapeutics, and for anticipating 
and evaluating pathogen variants with new 
phenotypes (for example, immune evasion).

Early research outputs

Public health decision 
making

Markov decision processes 
and RL159

Improved ability to learn optimal decisions from 
human–machine interactions.

Conceptual, theoretical
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In addition to predicting complex and multifaceted phenotypes from 

genetic sequences, AI approaches can help to infer the evolutionary 
trajectory of pathogens that are already circulating in a host popu-
lation and can potentially anticipate escape variants71. For example, 
human respiratory viruses that cause great global health burden, such 
as SARS-CoV-2 and influenza viruses, accumulate mutations continu-
ously owing to replication errors that, through natural selection, enable 
them to evade host antibody immunity mounted against previous virus 
variants72 (Fig. 1c). AI-driven variant forecasting can inform the develop-
ment of targeted vaccines, monoclonal antibodies and drugs targeting 
future pathogen strains73,74 could be paired with recent advances in 
accurately predicting protein structures as monomers and in complex 
with other molecules75. However, the variant that will dominate global 
or local spread will not only depend on predictions of pathogen evolu-
tion, but also on underlying dynamical processes influenced by human 
behaviour, cross-immunity, climatic conditions and previous exposure 
to other, related pathogens76. Failing to account for the complexity 
of these interacting processes could lead to false predictions from AI 
models alone. For example, recent work showed that epidemiological 
features predict SARS-CoV-2 variant spread better than those based on 
evolutionary and immunological drivers77.

Sequence-based AI methods also enable the exploration of as-yet 
unseen pathogen diversity. The recent metagenomic and metatran-
scriptomic discovery of RNA viruses has exponentially expanded our 
knowledge of the diversity of viruses found in animals, some of which 
could potentially spillover into humans and cause disease, or interact 
with other co-infecting pathogens78. The default tool for studying this 
diversity is molecular phylogenetics, which comprises a diverse field79 
of methods spanning the biological, statistical and computational sci-
ences. Variational Bayesian inference empowered through probabilistic 
programming could deliver a step change in the scale of phylogenetic 
tree estimation possible from molecular sequences80. Furthermore, ML/
AI models may be used to improve predictions of spillover potential 
between reservoirs and human hosts using pathogen genomic data78.

AI-aided integration of key data
Data science and representative sampling
Despite a step-change since the COVID-19 pandemic in the ability to per-
form large-scale, interdisciplinary data collection during disease out-
breaks, data scarcity and geographical biases remain major obstacles 
in global epidemiological research81 (Fig. 2). These have been shown to 
exacerbate racial biases82 and lead to non-optimal public health policy 
decisions. In particular, the uneven and inequitable distribution among 
locations of diagnostic testing resources (including genotyping)83 
results in biased sampling, limiting the representativeness and use of 
the data collected84. It is not only the volume of data that necessarily 
provides the most insights, but also the quality of them (for example, 
sampling design and representativeness); this big data paradox85 has 
important implications for our ability to infer key epidemiological 
parameters, to make accurate forecasts and to respond to emerging 
threats86.

As the global community continues to scale up infrastructure for 
infectious disease data collection and integration of data types that 
help to understand the drivers of transmission (for example, socio-
economic, census and satellite-derived climate/environmental data; 
Fig. 2), AI might be used in tackling problems such as improving the 
cost-effectiveness of surveillance and mitigating uneven representa-
tion in surveillance data. For example, active learning87 and Bayesian 
optimization88 (Box 1 and Table 1) can be used to inform the design of 
adaptive disease surveillance strategies (such as selecting the next set of 
locations, aircrafts or individuals to test based on current observations) 
that are tailored to answer specific epidemiological questions89. They 
are particularly useful when the costs of data collection and processing 
are high, as is the case of genomic surveillance, for example. However, 

implementing an adaptive surveillance system for outbreak detec-
tion, tracking and monitoring is challenged by the logistics and time 
scales for data collection, processing and translation into actionable 
insights89. Tightly linking computational and practical approaches to 
disease surveillance will be necessary if AI models are to offer tangible 
benefits. With openly accessible datasets on the drivers of transmis-
sion, it might become possible using AI to predict disease distributions 
without access to highly resolved epidemiological data.

Integrating new data sources
A plethora of new data sources and digital tools is creating new 
approaches to the modelling of infectious disease epidemics. During 
the COVID-19 pandemic in the UK, the National Health Service COVID-19 
app was downloaded to >21 million mobile phone devices, providing 
users with timely notifications of infectious disease exposures and 
instructions in case their contact was diagnosed positive90. Such mobile 
applications are a major new source of individual-level behavioural 
data for understanding and informing public health interventions. 
Research has shown how digital contact tracing apps could transform 
our ability to reduce transmission at a fraction of the cost of manual 
contact tracing91, especially when pathogens transmit rapidly and 
only a minority of infected individuals show early symptoms. Further-
more, contact-tracing apps could provide new, real-time data about 
the variation in transmissibility as a function of proximity and duration 
of contact, and how this variation changes through time and among 
pathogen variants92.

More generally, it is now feasible to aggregate individual-level mobil-
ity information from mobile phones, and this new source of data can 
substantially enhance the precision and use of mathematical models of 
infectious disease93,94. For example, such data are used to characterize 
population-level trends in human movement during emergencies95, 
and to understand how frequently individual venues are visited by 
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individuals. During the COVID-19 pandemic, a variety of sources of 
smartphone-derived mobility data were used to monitor population 
behaviours and how they shifted in response to public health inter-
ventions or perceived risk. Data governance and privacy-preserving 
aggregation of location signals can ensure that individuals are not iden-
tifiable, but challenges remain in ensuring that sensitive data are not 
leaked or used unintentionally to reinforce existing biases. Although 
mathematical descriptions of how pathogens spread through networks 
of susceptible, infected and recovered individuals are well established, 
further work is needed to integrate these epidemiological principles 
with new data sources and move beyond describing patterns in big 
datasets, especially when the contact networks that underlie transmis-
sion are transient and highly structured86. GNNs (see the section above) 
provide an approach to the linkage of high-precision epidemiological 
models with new data sources.

Integrating individual- and population-level indicators of disease 
activity using combinations of wastewater surveillance, population 
surveys, syndromic and digital surveillance, body-worn physiological 
sensor data (such as heart rate, step counts and sleep) and contact net-
work information could enhance our ability to detect outbreaks, moni-
tor disease spread and follow the long term sequelae of outbreaks96. For 
example, sensory-based surveillance data can detect early signs of long 
COVID from sleep and physical activity patterns97. Reinforcement learn-
ing (RL) systems (Box 1) have been used to support testing decisions 
at airports when limited testing was available98. There is the potential 
to apply multimodal AI to images, text, speech and other data to inter-
rogate and predict outcomes at the individual and population level99.

In addition to consensus genome sequences of sampled pathogens, 
the genetic diversity captured in metagenomic or deep-sequencing raw 
data can provide insights into disease spread and pathogen spillover 
potential100. Modern tools based on AI/ML algorithms harness the fre-
quency with which mutations are introduced into pathogen genomes 
to predict the timing of infection, identify nucleotide signatures that 
characterize epidemiologically linked individuals or resolve direction-
ality in transmission events101. During the COVID-19 pandemic, patho-
gen genome datasets grew in size substantially, from a few thousand 
genomes in previous epidemics to tens of millions of genomes. As a 
result, tools for the rapid analysis of large genomic datasets were built 
and are now available for future pandemics102,103.

As the global climate changes, the distribution and incidence of 
climate-sensitive infectious diseases such as dengue and cholera are 
expanding104 and the analysis of these dynamics could be enhanced 
by AI. Collection and incorporation of past, current and likely future 
climate data into epidemiological models can improve our understand-
ing of key epidemic dynamics and the reliability of predicted short- and 
long-term epidemic trajectories. Other opportunities arise when AI is 
used to improve short- and medium-term weather forecasts; recent 
research has demonstrated the potential for better climate modelling 
using physics-based models that incorporate aspects of AI105. This will 
improve the evaluation of the effect of climate on infectious diseases, 
which results from changes in host and vector species distributions, 
or from changes in human behaviour and contact patterns.

AI-driven disease modelling for policy
Public health decision making
During international health crises, such as the emergence of a novel 
pathogenic infectious disease, countries face complex decision-making 
challenges across sectors (for example, health, economics, educa-
tion and social well-being) to contain and mitigate disease spread. 
International travel and urbanization mean that today’s epidemics 
occur in tightly connected populations and can lead to pandemics 
within weeks of their emergence106. Decision makers must assess the 
cost and benefits of policies that are implemented to protect public 
health by maximizing their efficacy while minimizing negative and 

unintended consequences, all under great uncertainty. AI approaches 
that focus on developing generalized systems can potentially provide 
decision support107. Consequently, the mechanics of how public health 
policy decision making is done and how data and model results are inter-
preted may fundamentally change with the adoption of advanced AI.

It is common for there to be an interaction between infectious 
disease modellers and policymakers31, with questions and feedback 
from policymakers being communicated to the modelling community, 
sometimes coordinated through scientific advisory committees. In 
these interactions, time has a critical role: decision-makers are often 
presented with large amounts of data and results that may be inad-
equately summarized at the appropriate level and that are not always 
directly relevant to the decision at hand. Meanwhile, modellers face 
the challenge of developing increasingly complex models to address 
a wide range of questions, for which characterizing a clear objective 
or task can be sometimes difficult (Fig. 3). Owing to the exponential 
nature of epidemic growth and consequent risks, decisions often need 
to be taken urgently, based on the best possible evidence available 
at the time. AI is likely to be a critical tool for improving the speed of 
modelling for informing policy making. New ML and AI approaches can 
reduce greatly the runtime of epidemiological models, enabling a more 
thorough exploration of scenarios and their statistical uncertainties. 
Furthermore, large language models (LLMs) could provide bespoke 
summaries of complex quantitative models that are tailored to a deci-
sion maker’s preferences; not everyone likes graphs108.

Markov decision processes and RL109 are promising theoretical frame-
works in which new data types, prediction models and expert feedback 
can be integrated to enable rational and more timely decision-making 
during epidemics (Fig. 3). This has become possible due to advances in 
the speed at which models can be run and updated (see the ‘Modelling 
mechanisms of disease spread’ section). Even though RL frameworks 
are attractive for tackling multicountry disease outbreaks, they require 
clear definitions of objectives and rewards, including enumeration 
of the costs and benefits of different policy actions (RL is particularly 
useful in robotics and strategic multiplayer games). Incorporating 
public health objectives, which often change and are less likely to be 
quantifiable into flexible models that can incorporate human feedback, 
might provide attractive opportunities for future science–society–
policy interactions. Close collaboration between decision makers, civil 
society and the scientific community is therefore necessary to advance 
sociotechnical decision-making frameworks capable of commanding 
well-founded public trust and confidence for epidemiology, in advance 
of a future global pandemic110.

It remains an open question whether today’s RL models (or other 
algorithms for decision-making) will be able to reconstruct and predict 
outbreak trajectories with sufficient certainty to be practicable, and the 
answer will be contingent on the quality and timeliness of available data. 
Unintended and often unanticipated consequences from interventions, 
such as the evolution of drug resistance111 or behavioural changes in 
response to perceived high infection risks, have yet to be incorporated 
systematically into epidemic models ahead of their deployment in deci-
sion frameworks112. Challenges remain in evaluating the costs of inter-
ventions, which are deployed in combinations and frequently change 
through time or among locations. Incorporating this heterogeneity 
requires better methods in AI and causal inference, including emulated 
trials, as well as the use of hybrid models that integrate observational 
and causal information with simulations, to form causal ‘digital twins’ 
that permit counterfactual questions to be answered113.

Ethics in the development of AI tools
There are strong ethical reasons to support scientific efforts to explore 
how AI might improve infectious disease prevention and control efforts. 
Such improvements could save lives and reduce the burden of infec-
tious disease. However, the successful and appropriate deployment of 
AI tools will depend crucially on the integrated identification, careful 
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analysis and resolution of key ethical challenges. Some of these are com-
mon to the application of AI in all fields and contexts, such as concerns 
regarding transparency, accountability, fairness, privacy and avoidance 
of deepening of existing inequities114.

Others will be more specific to the use of AI tools for infectious 
disease in the context of pandemic preparedness and prevention. 
These include the importance of equitable and fair practices for the 
collection, storage and sharing of data, with a focus on protecting the 
interests of disadvantaged communities that have been historically 
affected disproportionately by infectious diseases, such as those in 
low- and middle-income countries. Some of these ethical concerns are 
not specific to AI, but related to the conduct of the infectious disease 
surveillance on which it depends, and its likely effect on lower-income 
and marginalized communities115. An important question in this regard 
will be what is, or should be, owed to communities that experience 
public health interventions with a potential benefit to public health 
globally, but that may cause harmful effects locally (for example, pri-
vacy infringements and cordons sanitaires). One key ethical consid-
eration, whether AI tools are being shared equitably for use by public 
health authorities, is likely to raise broader questions of capacity build-
ing. Making AI meaningfully accessible to all who need it will require 
the development and sharing of expertise through collaboration and 
the access to computational resources. An important and interest-
ing ethical question in the context of the opportunities outlined in 
this paper might be whether the use of AI in public health policy could 
potentially be used to better minimize the effects of interventions on 
disadvantaged communities.

A second broad class of ethical questions concerns the ways in which 
AI tools are to be deployed in the design and implementation of public 
health policy. An important lesson from COVID-19 was that all policy 
decisions implicitly or explicitly embody value judgements that have 

a moral component, for example, the questions of who should get 
vaccines first; under what conditions and to what extent personal lib-
erties can be justifiably impinged on to reduce transmission; and the 
level of privacy that should be maintained in the use of digital contact 
tracing116. It is vital that such judgements are subject to deliberation, 
clearly justified and are accountable. The inclusion of AI in such pro-
cesses amplifies the need for explainability, fairness and accountability 
in data-informed public health policy. AI must support rather than 
undermine local decision-making and autonomy in public health 
and no technical solution will be able to fully quantify the trade-offs 
between the potential harms and benefits of interventions. It is vital 
as a component of this, and a core requirement for well-founded trust 
and confidence, that the development of public policy and the uses of 
AI in it are informed by inclusive, meaningful public engagement, as 
well as inclusion of public health and clinical perspectives. There will 
probably be an interdependence between public health deployment 
and on-going research and development of AI tools for new sources 
of data, such as environmental/wastewater surveillance. This raises 
important questions about the role of research as a component of 
effective and responsible public health and the ethics of conducting 
research in global health emergencies.

Public health communication
Misinformation online (and disinformation campaigns that deceive and 
mislead audiences) can threaten the implementation and success of 
public health strategies against epidemics117. The WHO highlighted the 
importance of fighting misinformation during the COVID-19 pandemic 
and has outlined plans for reporting online misinformation118,119. AI 
could be used to identify and address misinformation and to empower 
effective public health communication117. Owing to the variety, vol-
ume and speed of modern online communication, spanning text, 
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of AI to optimize the design and implementation of effective control measures 
during a hypothetical multicountry disease outbreak. Data collected from 
disease surveillance are processed and analysed by an AI agent, potentially 
integrating other AI models for parameter estimation, nowcasting and 
forecasting of epidemic trajectories, as well as reconstructing historical 
transmission events based on current observations (top row). Before 
deployment of the AI model, it is trained using an outbreak simulator that 
simulates the spread of infectious diseases and the effects of different control 
measures; the model learns from these simulations by updating its model 

parameters according to the outcomes of the simulations and corresponding 
rewards (bottom right). Insights from the empirical data are used by the trained 
model to inform and recommend the most effective control measures, with 
validation and feedback from human policymakers and stakeholders to 
fine-tune alignment between model objectives and societally beneficial 
criteria. This is followed by the execution of public health actions (for example, 
whether to implement recommended or alternative control measures,  
or deploy further disease surveillance efforts) made ultimately by human 
policymakers (bottom left). The map shapefile was obtained from the Africa 
Data Hub under a Creative Commons licence CC BY 4.0.
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images, audio and video, it is impractical to use traditional statistical 
approaches to investigate the dynamics of digital data; instead, AI 
tools will support the analysis and synthesis of accurate and reliable 
information about health from the digital domain.

Generative AI models can provide real-time insights into informa-
tion relevant to public health120 and how public sentiment changes 
during an epidemic, potentially measuring the likelihood of adoption 
or adherence to public health measures and complementing more 
traditional survey information. Including the public’s feedback into 
AI models through LLM-based generative agents in individual-based 
epidemic models has been proposed and might enable those models 
to learn the public’s perception of, and behavioural responses to, epi-
demic events121. Researchers have used natural language processing to 
analyse data about exposure to misinformation and vaccine-sceptical 
messages shared on social media and to provide estimates of the effect 
of these messages on vaccine hesitancy122. However, extracting the 
complex reasons for vaccine hesitancy from quantitative data remains 
challenging57.

There are several risks in using AI to inform or support public health 
communication. Careful attention is needed to avoid or reduce bias, 
which is typically categorized into data-driven, algorithmic and human 
biases123. AI algorithms are by definition dependent on large training 
datasets, but biomedical datasets have historically excluded certain 
populations, including women and minority ethnic groups124. Biases 
can therefore lead to ethical mistakes or misunderstandings125. There 
is a risk in damaging public trust in public health information, with AI 
chatbots, for example, being shown to be less popular with the public 
for delivering health advice126. Another risk relates to the propensity 
for LLMs to produce false information, often referred to as AI halluci-
nations127, but principled statistical approaches show promise in the 
systematic identification of these128.

Open data and explainability
Open biological data linked to disease outcomes have powered many 
recent advances in the medical sciences and have improved disease 
at the individual level129,130. For some non-communicable diseases, 
the creation and maintenance of open databases using countries’ 
centralized digital health data have been supported by governments, 
long-term research funding and industry cooperation. Rigorous safety 
and ethical reviews should accompany and govern the access to and 
use of such centrally maintained databases. Moreover, it is important 
to adopt safeguarding processes and controls for the safe release of 
AI models trained on sensitive data.

In infectious disease modelling, the data landscape is more frag-
mented and harmonization of infectious disease surveillance data 
across countries remains a major challenge131. The WHO highlighted 
the promotion and growth of digital health and innovation in their 
recent digital health agenda132 and with the adoption of digital health, 
new routes for the use of AI are in reach. Recent studies have shown 
the potential for software tools to integrate modern optical charac-
ter recognition, natural language processing and LLMs to enhance 
the accuracy of and speed of data extraction from semi-structured/
unstructured sources, such as PDF files, press releases and situation 
reports133,134. These approaches promise to improve standard epide-
miological practices, such as the meta-analysis of data from the medi-
cal literature135 and multicountry analyses that leverage structured 
databases. Furthermore, basic epidemiological research tasks such as 
systematic reviews can be time consuming, and LLMs provide a simple 
interface to support the collection and summarization of research 
articles136.

Some large foundation models have been made open-source by 
technology companies and there is potential for them to be rigorously 
audited137 and used as pretrained models for further fine-tuning in 
infectious disease epidemiology. For example, fine-tuning pipelines 
such as retrieval-augmented generation could make AI models more 

reliable and support the extraction of valuable insights from privately 
stored data138.

Further discussion is needed to understand how international, sen-
sitive and multimodal data might be paired with novel AI models in 
safe and distributed hardware architecture, and how AI computing 
can be made more environmentally sustainable. Surveillance systems 
need to be linked centrally or through decentralized computational 
infrastructures in a secure manner, and with privacy and governance 
structures that can accommodate complex data sharing arrangements. 
An example of this is federated learning, in which partial model train-
ing occurs across multiple local servers without sharing sensitive data 
externally, with the results iteratively merged on a central server139,140. 
However, coordinating across multiple databases can become burden-
some. Moreover, there is a need to follow existing principles to ensure 
that data and digital assets are comparable and can easily be deployed 
across multiple settings (for example, the FAIR principles: findability, 
accessibility, interoperability and reusability141). Importantly, data 
science approaches to health data require careful ethical oversight, as 
recently reviewed in the context of research in Africa142. The successful 
application of AI algorithms to individual health data requires trust and 
a shared understanding that AI use benefits the individuals contributing 
their data, as well as others. The challenges of data sharing and access 
are not limited to health data alone but extend also to data relevant in 
predicting health outcomes, including data on individual behaviours 
(such as human mobility data) that are often owned by companies and 
in some cases of commercial value143.

Lastly, algorithms should be explainable, meaning that the predic-
tions made by the model can be interpreted by users and stakehold-
ers alike. In contrast to mechanistic models, which are explainable 
by construction, foundation models are not built with interpretable 
inductive foundations and remain ‘black boxes’ to users144. Quantita-
tive measures for explainable AI have been developed, and efforts have 
been made in the infectious disease literature145, but no comprehensive 
guidelines for the field have yet been published. Promising areas for 
future exploration are causal inference methods in statistics and ML146.

Limitations of AI in ID modelling
We note at least three fundamental limitations of AI that will limit its 
applications to epidemic modelling. First, current models struggle with 
explainability, which constrains their ability to provide mechanistic 
insights into the transmission process and their power to generalize 
beyond previously observed data and scenarios. Second, AI models 
that are designed to support general tasks, often with a text or voice 
chat interface, currently do not include specific models for answer-
ing or communicating about key epidemiological questions and con-
cepts. Integrating single task models into more general foundation 
models might represent an approach to developing a future general 
‘AI-infectious disease’ assistant. Third, capable AI models are currently 
trained by large technology companies at huge costs. Waiting for their 
deployment to then fine-tune them to answer specific tasks is not  
sustainable, nor equitable.

Recommendations for AI in ID epidemiology
The risks of AI have been discussed at length107 but their potential to 
transform science is unquestioned. When viewed through a broad 
lens, AI can be seen as a continuation of the rich legacy of mathemat-
ics, statistics and computer science in the field of infectious disease 
epidemiology. Advances in AI have the potential to both complement 
existing approaches and to inspire entirely new epidemiological meth-
ods. Examples of potential breakthroughs in AI epidemiology include 
pretraining large and foundation models, zero-shot and few-shot learn-
ing approaches that require minimal data, innovative new data archi-
tectures, and computational environments to run and disseminate 
these models efficiently. In part, these breakthroughs will be enabled by 
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the embedding of fundamental biological knowledge and constraints 
within AI models71, which echoes developments in the application of 
AI to other fields61,147.

However, the benefits of AI for public health will be critically depend-
ent on the availability, accessibility and representativeness of data 
and a firm ethical framework. Even though more data have become 
available during health emergencies, especially for COVID-19, routine 
surveillance data for infectious diseases often remains siloed and inac-
cessible to the broader community, prohibiting the use of these data 
for improved disease modelling. However, the substantial volume of 
existing data means that advances aided by AI will probably be gener-
ated from existing openly available datasets. More broadly, the quality 
standard for statistical models used in health domains should be higher 
than for other fields, especially when understanding of cause-and-effect 
is relevant to treatment and policy decisions and when problems such 
as poor model calibration could cause considerable patient harm148. 
The development of benchmarks to evaluate new methods is therefore 
critical for building trust and for highlighting where AI might provide 
the greatest effect in the field. In part, this is why statistical models in 
medicine are guided not only by predictive accuracy, but also value 
calibration, explainability, causality and a rigorous theoretical basis. We 
join the AI community in recommending that the fundamental theory 
underpinning current AI models is studied further149. We advocate for 
robust data transparency and ethical sharing, and a detailed study of 
a range of biases. Finally, we support justifiable barriers of entry to 
including models into clinical practice, and research into robustness, 
training and evaluation of popular AI models.

Mechanistic models in infectious disease epidemiology continue 
to be developed independently of advances in AI. In this Perspective, 
we have highlighted key areas in which AI could provide either incre-
mental or potentially transformative improvements in modelling 
epidemic dynamics. However, evaluation of the true value added by 
AI approaches is difficult, and should include often-overlooked con-
siderations such as the environmental costs associated with training 
complex AI models. There have been recent examples in which simpler 
AI methods do not consistently outperform their mechanistic counter-
parts37. Even when AI models do show substantial empirical improve-
ments, translating these models into effective government policy 
requires considering many factors beyond mere data fit31. Although 
the potential of AI models is evident, their ultimate value will depend 
on demonstrating a clear opportunity cost advantage over existing 
approaches—which has yet to be proven definitively.

Open access to and sharing of data, analyses and results in a collabo-
rative and transparent environment can greatly benefit the success of 
public health campaigns for infectious disease control150. By contrast, 
the scale and cost of training foundation AI models is still increasing151 
and is prohibitive for most. Although we hope that new ideas to mitigate 
this barrier will emerge, the current suite of AI models should be more 
transparent in their code, architecture and data. Likewise, the develop-
ment of transparent and open-access repositories of pathogen-specific 
data (for example, genomic sequences), environmental data (such as 
temperature and land cover) and behavioural data (such as human 
mobility patterns) will remain central for training models and reducing 
data access inequities. Finally, demonstrating the effectiveness of AI 
in improving policy decisions that benefit population health remains 
a notable challenge. For AI to be successful in that regard, the coming 
years must see growth in close collaborations between research, policy 
and society152.
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